Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+54x-5=500
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+54x-5-500=500-500
Tenglamaning ikkala tarafidan 500 ni ayirish.
x^{2}+54x-5-500=0
O‘zidan 500 ayirilsa 0 qoladi.
x^{2}+54x-505=0
-5 dan 500 ni ayirish.
x=\frac{-54±\sqrt{54^{2}-4\left(-505\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 54 ni b va -505 ni c bilan almashtiring.
x=\frac{-54±\sqrt{2916-4\left(-505\right)}}{2}
54 kvadratini chiqarish.
x=\frac{-54±\sqrt{2916+2020}}{2}
-4 ni -505 marotabaga ko'paytirish.
x=\frac{-54±\sqrt{4936}}{2}
2916 ni 2020 ga qo'shish.
x=\frac{-54±2\sqrt{1234}}{2}
4936 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{1234}-54}{2}
x=\frac{-54±2\sqrt{1234}}{2} tenglamasini yeching, bunda ± musbat. -54 ni 2\sqrt{1234} ga qo'shish.
x=\sqrt{1234}-27
-54+2\sqrt{1234} ni 2 ga bo'lish.
x=\frac{-2\sqrt{1234}-54}{2}
x=\frac{-54±2\sqrt{1234}}{2} tenglamasini yeching, bunda ± manfiy. -54 dan 2\sqrt{1234} ni ayirish.
x=-\sqrt{1234}-27
-54-2\sqrt{1234} ni 2 ga bo'lish.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
Tenglama yechildi.
x^{2}+54x-5=500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+54x-5-\left(-5\right)=500-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+54x=500-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}+54x=505
500 dan -5 ni ayirish.
x^{2}+54x+27^{2}=505+27^{2}
54 ni bo‘lish, x shartining koeffitsienti, 2 ga 27 olish uchun. Keyin, 27 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+54x+729=505+729
27 kvadratini chiqarish.
x^{2}+54x+729=1234
505 ni 729 ga qo'shish.
\left(x+27\right)^{2}=1234
x^{2}+54x+729 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+27\right)^{2}}=\sqrt{1234}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+27=\sqrt{1234} x+27=-\sqrt{1234}
Qisqartirish.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
Tenglamaning ikkala tarafidan 27 ni ayirish.
x^{2}+54x-5=500
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+54x-5-500=500-500
Tenglamaning ikkala tarafidan 500 ni ayirish.
x^{2}+54x-5-500=0
O‘zidan 500 ayirilsa 0 qoladi.
x^{2}+54x-505=0
-5 dan 500 ni ayirish.
x=\frac{-54±\sqrt{54^{2}-4\left(-505\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 54 ni b va -505 ni c bilan almashtiring.
x=\frac{-54±\sqrt{2916-4\left(-505\right)}}{2}
54 kvadratini chiqarish.
x=\frac{-54±\sqrt{2916+2020}}{2}
-4 ni -505 marotabaga ko'paytirish.
x=\frac{-54±\sqrt{4936}}{2}
2916 ni 2020 ga qo'shish.
x=\frac{-54±2\sqrt{1234}}{2}
4936 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{1234}-54}{2}
x=\frac{-54±2\sqrt{1234}}{2} tenglamasini yeching, bunda ± musbat. -54 ni 2\sqrt{1234} ga qo'shish.
x=\sqrt{1234}-27
-54+2\sqrt{1234} ni 2 ga bo'lish.
x=\frac{-2\sqrt{1234}-54}{2}
x=\frac{-54±2\sqrt{1234}}{2} tenglamasini yeching, bunda ± manfiy. -54 dan 2\sqrt{1234} ni ayirish.
x=-\sqrt{1234}-27
-54-2\sqrt{1234} ni 2 ga bo'lish.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
Tenglama yechildi.
x^{2}+54x-5=500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+54x-5-\left(-5\right)=500-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+54x=500-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}+54x=505
500 dan -5 ni ayirish.
x^{2}+54x+27^{2}=505+27^{2}
54 ni bo‘lish, x shartining koeffitsienti, 2 ga 27 olish uchun. Keyin, 27 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+54x+729=505+729
27 kvadratini chiqarish.
x^{2}+54x+729=1234
505 ni 729 ga qo'shish.
\left(x+27\right)^{2}=1234
x^{2}+54x+729 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+27\right)^{2}}=\sqrt{1234}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+27=\sqrt{1234} x+27=-\sqrt{1234}
Qisqartirish.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
Tenglamaning ikkala tarafidan 27 ni ayirish.