x uchun yechish (complex solution)
x=\sqrt{1234}-27\approx 8,128336141
x=-\left(\sqrt{1234}+27\right)\approx -62,128336141
x uchun yechish
x=\sqrt{1234}-27\approx 8,128336141
x=-\sqrt{1234}-27\approx -62,128336141
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+54x-5=500
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+54x-5-500=500-500
Tenglamaning ikkala tarafidan 500 ni ayirish.
x^{2}+54x-5-500=0
O‘zidan 500 ayirilsa 0 qoladi.
x^{2}+54x-505=0
-5 dan 500 ni ayirish.
x=\frac{-54±\sqrt{54^{2}-4\left(-505\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 54 ni b va -505 ni c bilan almashtiring.
x=\frac{-54±\sqrt{2916-4\left(-505\right)}}{2}
54 kvadratini chiqarish.
x=\frac{-54±\sqrt{2916+2020}}{2}
-4 ni -505 marotabaga ko'paytirish.
x=\frac{-54±\sqrt{4936}}{2}
2916 ni 2020 ga qo'shish.
x=\frac{-54±2\sqrt{1234}}{2}
4936 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{1234}-54}{2}
x=\frac{-54±2\sqrt{1234}}{2} tenglamasini yeching, bunda ± musbat. -54 ni 2\sqrt{1234} ga qo'shish.
x=\sqrt{1234}-27
-54+2\sqrt{1234} ni 2 ga bo'lish.
x=\frac{-2\sqrt{1234}-54}{2}
x=\frac{-54±2\sqrt{1234}}{2} tenglamasini yeching, bunda ± manfiy. -54 dan 2\sqrt{1234} ni ayirish.
x=-\sqrt{1234}-27
-54-2\sqrt{1234} ni 2 ga bo'lish.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
Tenglama yechildi.
x^{2}+54x-5=500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+54x-5-\left(-5\right)=500-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+54x=500-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}+54x=505
500 dan -5 ni ayirish.
x^{2}+54x+27^{2}=505+27^{2}
54 ni bo‘lish, x shartining koeffitsienti, 2 ga 27 olish uchun. Keyin, 27 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+54x+729=505+729
27 kvadratini chiqarish.
x^{2}+54x+729=1234
505 ni 729 ga qo'shish.
\left(x+27\right)^{2}=1234
x^{2}+54x+729 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+27\right)^{2}}=\sqrt{1234}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+27=\sqrt{1234} x+27=-\sqrt{1234}
Qisqartirish.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
Tenglamaning ikkala tarafidan 27 ni ayirish.
x^{2}+54x-5=500
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+54x-5-500=500-500
Tenglamaning ikkala tarafidan 500 ni ayirish.
x^{2}+54x-5-500=0
O‘zidan 500 ayirilsa 0 qoladi.
x^{2}+54x-505=0
-5 dan 500 ni ayirish.
x=\frac{-54±\sqrt{54^{2}-4\left(-505\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 54 ni b va -505 ni c bilan almashtiring.
x=\frac{-54±\sqrt{2916-4\left(-505\right)}}{2}
54 kvadratini chiqarish.
x=\frac{-54±\sqrt{2916+2020}}{2}
-4 ni -505 marotabaga ko'paytirish.
x=\frac{-54±\sqrt{4936}}{2}
2916 ni 2020 ga qo'shish.
x=\frac{-54±2\sqrt{1234}}{2}
4936 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{1234}-54}{2}
x=\frac{-54±2\sqrt{1234}}{2} tenglamasini yeching, bunda ± musbat. -54 ni 2\sqrt{1234} ga qo'shish.
x=\sqrt{1234}-27
-54+2\sqrt{1234} ni 2 ga bo'lish.
x=\frac{-2\sqrt{1234}-54}{2}
x=\frac{-54±2\sqrt{1234}}{2} tenglamasini yeching, bunda ± manfiy. -54 dan 2\sqrt{1234} ni ayirish.
x=-\sqrt{1234}-27
-54-2\sqrt{1234} ni 2 ga bo'lish.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
Tenglama yechildi.
x^{2}+54x-5=500
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+54x-5-\left(-5\right)=500-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+54x=500-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}+54x=505
500 dan -5 ni ayirish.
x^{2}+54x+27^{2}=505+27^{2}
54 ni bo‘lish, x shartining koeffitsienti, 2 ga 27 olish uchun. Keyin, 27 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+54x+729=505+729
27 kvadratini chiqarish.
x^{2}+54x+729=1234
505 ni 729 ga qo'shish.
\left(x+27\right)^{2}=1234
x^{2}+54x+729 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+27\right)^{2}}=\sqrt{1234}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+27=\sqrt{1234} x+27=-\sqrt{1234}
Qisqartirish.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
Tenglamaning ikkala tarafidan 27 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}