Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+52x-45=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-52±\sqrt{52^{2}-4\left(-45\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 52 ni b va -45 ni c bilan almashtiring.
x=\frac{-52±\sqrt{2704-4\left(-45\right)}}{2}
52 kvadratini chiqarish.
x=\frac{-52±\sqrt{2704+180}}{2}
-4 ni -45 marotabaga ko'paytirish.
x=\frac{-52±\sqrt{2884}}{2}
2704 ni 180 ga qo'shish.
x=\frac{-52±2\sqrt{721}}{2}
2884 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{721}-52}{2}
x=\frac{-52±2\sqrt{721}}{2} tenglamasini yeching, bunda ± musbat. -52 ni 2\sqrt{721} ga qo'shish.
x=\sqrt{721}-26
-52+2\sqrt{721} ni 2 ga bo'lish.
x=\frac{-2\sqrt{721}-52}{2}
x=\frac{-52±2\sqrt{721}}{2} tenglamasini yeching, bunda ± manfiy. -52 dan 2\sqrt{721} ni ayirish.
x=-\sqrt{721}-26
-52-2\sqrt{721} ni 2 ga bo'lish.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Tenglama yechildi.
x^{2}+52x-45=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+52x-45-\left(-45\right)=-\left(-45\right)
45 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+52x=-\left(-45\right)
O‘zidan -45 ayirilsa 0 qoladi.
x^{2}+52x=45
0 dan -45 ni ayirish.
x^{2}+52x+26^{2}=45+26^{2}
52 ni bo‘lish, x shartining koeffitsienti, 2 ga 26 olish uchun. Keyin, 26 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+52x+676=45+676
26 kvadratini chiqarish.
x^{2}+52x+676=721
45 ni 676 ga qo'shish.
\left(x+26\right)^{2}=721
x^{2}+52x+676 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+26\right)^{2}}=\sqrt{721}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+26=\sqrt{721} x+26=-\sqrt{721}
Qisqartirish.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Tenglamaning ikkala tarafidan 26 ni ayirish.
x^{2}+52x-45=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-52±\sqrt{52^{2}-4\left(-45\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 52 ni b va -45 ni c bilan almashtiring.
x=\frac{-52±\sqrt{2704-4\left(-45\right)}}{2}
52 kvadratini chiqarish.
x=\frac{-52±\sqrt{2704+180}}{2}
-4 ni -45 marotabaga ko'paytirish.
x=\frac{-52±\sqrt{2884}}{2}
2704 ni 180 ga qo'shish.
x=\frac{-52±2\sqrt{721}}{2}
2884 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{721}-52}{2}
x=\frac{-52±2\sqrt{721}}{2} tenglamasini yeching, bunda ± musbat. -52 ni 2\sqrt{721} ga qo'shish.
x=\sqrt{721}-26
-52+2\sqrt{721} ni 2 ga bo'lish.
x=\frac{-2\sqrt{721}-52}{2}
x=\frac{-52±2\sqrt{721}}{2} tenglamasini yeching, bunda ± manfiy. -52 dan 2\sqrt{721} ni ayirish.
x=-\sqrt{721}-26
-52-2\sqrt{721} ni 2 ga bo'lish.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Tenglama yechildi.
x^{2}+52x-45=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+52x-45-\left(-45\right)=-\left(-45\right)
45 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+52x=-\left(-45\right)
O‘zidan -45 ayirilsa 0 qoladi.
x^{2}+52x=45
0 dan -45 ni ayirish.
x^{2}+52x+26^{2}=45+26^{2}
52 ni bo‘lish, x shartining koeffitsienti, 2 ga 26 olish uchun. Keyin, 26 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+52x+676=45+676
26 kvadratini chiqarish.
x^{2}+52x+676=721
45 ni 676 ga qo'shish.
\left(x+26\right)^{2}=721
x^{2}+52x+676 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+26\right)^{2}}=\sqrt{721}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+26=\sqrt{721} x+26=-\sqrt{721}
Qisqartirish.
x=\sqrt{721}-26 x=-\sqrt{721}-26
Tenglamaning ikkala tarafidan 26 ni ayirish.