Omil
\left(x+16\right)\left(x+24\right)
Baholash
\left(x+16\right)\left(x+24\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=40 ab=1\times 384=384
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda x^{2}+ax+bx+384 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,384 2,192 3,128 4,96 6,64 8,48 12,32 16,24
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 384-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+384=385 2+192=194 3+128=131 4+96=100 6+64=70 8+48=56 12+32=44 16+24=40
Har bir juftlik yigʻindisini hisoblang.
a=16 b=24
Yechim – 40 yigʻindisini beruvchi juftlik.
\left(x^{2}+16x\right)+\left(24x+384\right)
x^{2}+40x+384 ni \left(x^{2}+16x\right)+\left(24x+384\right) sifatida qaytadan yozish.
x\left(x+16\right)+24\left(x+16\right)
Birinchi guruhda x ni va ikkinchi guruhda 24 ni faktordan chiqaring.
\left(x+16\right)\left(x+24\right)
Distributiv funktsiyasidan foydalangan holda x+16 umumiy terminini chiqaring.
x^{2}+40x+384=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-40±\sqrt{40^{2}-4\times 384}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-40±\sqrt{1600-4\times 384}}{2}
40 kvadratini chiqarish.
x=\frac{-40±\sqrt{1600-1536}}{2}
-4 ni 384 marotabaga ko'paytirish.
x=\frac{-40±\sqrt{64}}{2}
1600 ni -1536 ga qo'shish.
x=\frac{-40±8}{2}
64 ning kvadrat ildizini chiqarish.
x=-\frac{32}{2}
x=\frac{-40±8}{2} tenglamasini yeching, bunda ± musbat. -40 ni 8 ga qo'shish.
x=-16
-32 ni 2 ga bo'lish.
x=-\frac{48}{2}
x=\frac{-40±8}{2} tenglamasini yeching, bunda ± manfiy. -40 dan 8 ni ayirish.
x=-24
-48 ni 2 ga bo'lish.
x^{2}+40x+384=\left(x-\left(-16\right)\right)\left(x-\left(-24\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -16 ga va x_{2} uchun -24 ga bo‘ling.
x^{2}+40x+384=\left(x+16\right)\left(x+24\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}