Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+3x+9=15
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+3x+9-15=15-15
Tenglamaning ikkala tarafidan 15 ni ayirish.
x^{2}+3x+9-15=0
O‘zidan 15 ayirilsa 0 qoladi.
x^{2}+3x-6=0
9 dan 15 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\left(-6\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3 ni b va -6 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-6\right)}}{2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+24}}{2}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{33}}{2}
9 ni 24 ga qo'shish.
x=\frac{\sqrt{33}-3}{2}
x=\frac{-3±\sqrt{33}}{2} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{33} ga qo'shish.
x=\frac{-\sqrt{33}-3}{2}
x=\frac{-3±\sqrt{33}}{2} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{33} ni ayirish.
x=\frac{\sqrt{33}-3}{2} x=\frac{-\sqrt{33}-3}{2}
Tenglama yechildi.
x^{2}+3x+9=15
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+3x+9-9=15-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
x^{2}+3x=15-9
O‘zidan 9 ayirilsa 0 qoladi.
x^{2}+3x=6
15 dan 9 ni ayirish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=6+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=6+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{33}{4}
6 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=\frac{33}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{33}}{2} x+\frac{3}{2}=-\frac{\sqrt{33}}{2}
Qisqartirish.
x=\frac{\sqrt{33}-3}{2} x=\frac{-\sqrt{33}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.