Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+3394x+3976=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3394±\sqrt{3394^{2}-4\times 3976}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3394 ni b va 3976 ni c bilan almashtiring.
x=\frac{-3394±\sqrt{11519236-4\times 3976}}{2}
3394 kvadratini chiqarish.
x=\frac{-3394±\sqrt{11519236-15904}}{2}
-4 ni 3976 marotabaga ko'paytirish.
x=\frac{-3394±\sqrt{11503332}}{2}
11519236 ni -15904 ga qo'shish.
x=\frac{-3394±6\sqrt{319537}}{2}
11503332 ning kvadrat ildizini chiqarish.
x=\frac{6\sqrt{319537}-3394}{2}
x=\frac{-3394±6\sqrt{319537}}{2} tenglamasini yeching, bunda ± musbat. -3394 ni 6\sqrt{319537} ga qo'shish.
x=3\sqrt{319537}-1697
-3394+6\sqrt{319537} ni 2 ga bo'lish.
x=\frac{-6\sqrt{319537}-3394}{2}
x=\frac{-3394±6\sqrt{319537}}{2} tenglamasini yeching, bunda ± manfiy. -3394 dan 6\sqrt{319537} ni ayirish.
x=-3\sqrt{319537}-1697
-3394-6\sqrt{319537} ni 2 ga bo'lish.
x=3\sqrt{319537}-1697 x=-3\sqrt{319537}-1697
Tenglama yechildi.
x^{2}+3394x+3976=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+3394x+3976-3976=-3976
Tenglamaning ikkala tarafidan 3976 ni ayirish.
x^{2}+3394x=-3976
O‘zidan 3976 ayirilsa 0 qoladi.
x^{2}+3394x+1697^{2}=-3976+1697^{2}
3394 ni bo‘lish, x shartining koeffitsienti, 2 ga 1697 olish uchun. Keyin, 1697 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3394x+2879809=-3976+2879809
1697 kvadratini chiqarish.
x^{2}+3394x+2879809=2875833
-3976 ni 2879809 ga qo'shish.
\left(x+1697\right)^{2}=2875833
x^{2}+3394x+2879809 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1697\right)^{2}}=\sqrt{2875833}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1697=3\sqrt{319537} x+1697=-3\sqrt{319537}
Qisqartirish.
x=3\sqrt{319537}-1697 x=-3\sqrt{319537}-1697
Tenglamaning ikkala tarafidan 1697 ni ayirish.