Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+30x-120=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-30±\sqrt{30^{2}-4\left(-120\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-30±\sqrt{900-4\left(-120\right)}}{2}
30 kvadratini chiqarish.
x=\frac{-30±\sqrt{900+480}}{2}
-4 ni -120 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{1380}}{2}
900 ni 480 ga qo'shish.
x=\frac{-30±2\sqrt{345}}{2}
1380 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{345}-30}{2}
x=\frac{-30±2\sqrt{345}}{2} tenglamasini yeching, bunda ± musbat. -30 ni 2\sqrt{345} ga qo'shish.
x=\sqrt{345}-15
-30+2\sqrt{345} ni 2 ga bo'lish.
x=\frac{-2\sqrt{345}-30}{2}
x=\frac{-30±2\sqrt{345}}{2} tenglamasini yeching, bunda ± manfiy. -30 dan 2\sqrt{345} ni ayirish.
x=-\sqrt{345}-15
-30-2\sqrt{345} ni 2 ga bo'lish.
x^{2}+30x-120=\left(x-\left(\sqrt{345}-15\right)\right)\left(x-\left(-\sqrt{345}-15\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -15+\sqrt{345} ga va x_{2} uchun -15-\sqrt{345} ga bo‘ling.