x uchun yechish
x=-5
x=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=2 ab=-15
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}+2x-15 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,15 -3,5
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -15-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+15=14 -3+5=2
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=5
Yechim – 2 yigʻindisini beruvchi juftlik.
\left(x-3\right)\left(x+5\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=3 x=-5
Tenglamani yechish uchun x-3=0 va x+5=0 ni yeching.
a+b=2 ab=1\left(-15\right)=-15
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-15 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,15 -3,5
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -15-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+15=14 -3+5=2
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=5
Yechim – 2 yigʻindisini beruvchi juftlik.
\left(x^{2}-3x\right)+\left(5x-15\right)
x^{2}+2x-15 ni \left(x^{2}-3x\right)+\left(5x-15\right) sifatida qaytadan yozish.
x\left(x-3\right)+5\left(x-3\right)
Birinchi guruhda x ni va ikkinchi guruhda 5 ni faktordan chiqaring.
\left(x-3\right)\left(x+5\right)
Distributiv funktsiyasidan foydalangan holda x-3 umumiy terminini chiqaring.
x=3 x=-5
Tenglamani yechish uchun x-3=0 va x+5=0 ni yeching.
x^{2}+2x-15=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -15 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+60}}{2}
-4 ni -15 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{64}}{2}
4 ni 60 ga qo'shish.
x=\frac{-2±8}{2}
64 ning kvadrat ildizini chiqarish.
x=\frac{6}{2}
x=\frac{-2±8}{2} tenglamasini yeching, bunda ± musbat. -2 ni 8 ga qo'shish.
x=3
6 ni 2 ga bo'lish.
x=-\frac{10}{2}
x=\frac{-2±8}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 8 ni ayirish.
x=-5
-10 ni 2 ga bo'lish.
x=3 x=-5
Tenglama yechildi.
x^{2}+2x-15=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
15 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+2x=-\left(-15\right)
O‘zidan -15 ayirilsa 0 qoladi.
x^{2}+2x=15
0 dan -15 ni ayirish.
x^{2}+2x+1^{2}=15+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=15+1
1 kvadratini chiqarish.
x^{2}+2x+1=16
15 ni 1 ga qo'shish.
\left(x+1\right)^{2}=16
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=4 x+1=-4
Qisqartirish.
x=3 x=-5
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}