x uchun yechish
x=\sqrt{105}+10\approx 20,246950766
x=10-\sqrt{105}\approx -0,246950766
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+2x+4-22x=9
Ikkala tarafdan 22x ni ayirish.
x^{2}-20x+4=9
-20x ni olish uchun 2x va -22x ni birlashtirish.
x^{2}-20x+4-9=0
Ikkala tarafdan 9 ni ayirish.
x^{2}-20x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -20 ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-5\right)}}{2}
-20 kvadratini chiqarish.
x=\frac{-\left(-20\right)±\sqrt{400+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{420}}{2}
400 ni 20 ga qo'shish.
x=\frac{-\left(-20\right)±2\sqrt{105}}{2}
420 ning kvadrat ildizini chiqarish.
x=\frac{20±2\sqrt{105}}{2}
-20 ning teskarisi 20 ga teng.
x=\frac{2\sqrt{105}+20}{2}
x=\frac{20±2\sqrt{105}}{2} tenglamasini yeching, bunda ± musbat. 20 ni 2\sqrt{105} ga qo'shish.
x=\sqrt{105}+10
20+2\sqrt{105} ni 2 ga bo'lish.
x=\frac{20-2\sqrt{105}}{2}
x=\frac{20±2\sqrt{105}}{2} tenglamasini yeching, bunda ± manfiy. 20 dan 2\sqrt{105} ni ayirish.
x=10-\sqrt{105}
20-2\sqrt{105} ni 2 ga bo'lish.
x=\sqrt{105}+10 x=10-\sqrt{105}
Tenglama yechildi.
x^{2}+2x+4-22x=9
Ikkala tarafdan 22x ni ayirish.
x^{2}-20x+4=9
-20x ni olish uchun 2x va -22x ni birlashtirish.
x^{2}-20x=9-4
Ikkala tarafdan 4 ni ayirish.
x^{2}-20x=5
5 olish uchun 9 dan 4 ni ayirish.
x^{2}-20x+\left(-10\right)^{2}=5+\left(-10\right)^{2}
-20 ni bo‘lish, x shartining koeffitsienti, 2 ga -10 olish uchun. Keyin, -10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-20x+100=5+100
-10 kvadratini chiqarish.
x^{2}-20x+100=105
5 ni 100 ga qo'shish.
\left(x-10\right)^{2}=105
x^{2}-20x+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-10\right)^{2}}=\sqrt{105}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-10=\sqrt{105} x-10=-\sqrt{105}
Qisqartirish.
x=\sqrt{105}+10 x=10-\sqrt{105}
10 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}