Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+2x+3=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+2x+3-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
x^{2}+2x+3-12=0
O‘zidan 12 ayirilsa 0 qoladi.
x^{2}+2x-9=0
3 dan 12 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -9 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-9\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{40}}{2}
4 ni 36 ga qo'shish.
x=\frac{-2±2\sqrt{10}}{2}
40 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{10}-2}{2}
x=\frac{-2±2\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{10} ga qo'shish.
x=\sqrt{10}-1
-2+2\sqrt{10} ni 2 ga bo'lish.
x=\frac{-2\sqrt{10}-2}{2}
x=\frac{-2±2\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{10} ni ayirish.
x=-\sqrt{10}-1
-2-2\sqrt{10} ni 2 ga bo'lish.
x=\sqrt{10}-1 x=-\sqrt{10}-1
Tenglama yechildi.
x^{2}+2x+3=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+3-3=12-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
x^{2}+2x=12-3
O‘zidan 3 ayirilsa 0 qoladi.
x^{2}+2x=9
12 dan 3 ni ayirish.
x^{2}+2x+1^{2}=9+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=9+1
1 kvadratini chiqarish.
x^{2}+2x+1=10
9 ni 1 ga qo'shish.
\left(x+1\right)^{2}=10
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{10} x+1=-\sqrt{10}
Qisqartirish.
x=\sqrt{10}-1 x=-\sqrt{10}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
x^{2}+2x+3=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+2x+3-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
x^{2}+2x+3-12=0
O‘zidan 12 ayirilsa 0 qoladi.
x^{2}+2x-9=0
3 dan 12 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -9 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-9\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{40}}{2}
4 ni 36 ga qo'shish.
x=\frac{-2±2\sqrt{10}}{2}
40 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{10}-2}{2}
x=\frac{-2±2\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{10} ga qo'shish.
x=\sqrt{10}-1
-2+2\sqrt{10} ni 2 ga bo'lish.
x=\frac{-2\sqrt{10}-2}{2}
x=\frac{-2±2\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{10} ni ayirish.
x=-\sqrt{10}-1
-2-2\sqrt{10} ni 2 ga bo'lish.
x=\sqrt{10}-1 x=-\sqrt{10}-1
Tenglama yechildi.
x^{2}+2x+3=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+3-3=12-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
x^{2}+2x=12-3
O‘zidan 3 ayirilsa 0 qoladi.
x^{2}+2x=9
12 dan 3 ni ayirish.
x^{2}+2x+1^{2}=9+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=9+1
1 kvadratini chiqarish.
x^{2}+2x+1=10
9 ni 1 ga qo'shish.
\left(x+1\right)^{2}=10
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{10} x+1=-\sqrt{10}
Qisqartirish.
x=\sqrt{10}-1 x=-\sqrt{10}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.