Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+x+1=-1
x ni olish uchun 2x va -x ni birlashtirish.
x^{2}+x+1+1=0
1 ni ikki tarafga qo’shing.
x^{2}+x+2=0
2 olish uchun 1 va 1'ni qo'shing.
x=\frac{-1±\sqrt{1^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va 2 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 2}}{2}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{-7}}{2}
1 ni -8 ga qo'shish.
x=\frac{-1±\sqrt{7}i}{2}
-7 ning kvadrat ildizini chiqarish.
x=\frac{-1+\sqrt{7}i}{2}
x=\frac{-1±\sqrt{7}i}{2} tenglamasini yeching, bunda ± musbat. -1 ni i\sqrt{7} ga qo'shish.
x=\frac{-\sqrt{7}i-1}{2}
x=\frac{-1±\sqrt{7}i}{2} tenglamasini yeching, bunda ± manfiy. -1 dan i\sqrt{7} ni ayirish.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
Tenglama yechildi.
x^{2}+x+1=-1
x ni olish uchun 2x va -x ni birlashtirish.
x^{2}+x=-1-1
Ikkala tarafdan 1 ni ayirish.
x^{2}+x=-2
-2 olish uchun -1 dan 1 ni ayirish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-2+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=-2+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=-\frac{7}{4}
-2 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{7}i}{2} x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
Qisqartirish.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.