Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+25x-50=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-25±\sqrt{25^{2}-4\left(-50\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-25±\sqrt{625-4\left(-50\right)}}{2}
25 kvadratini chiqarish.
x=\frac{-25±\sqrt{625+200}}{2}
-4 ni -50 marotabaga ko'paytirish.
x=\frac{-25±\sqrt{825}}{2}
625 ni 200 ga qo'shish.
x=\frac{-25±5\sqrt{33}}{2}
825 ning kvadrat ildizini chiqarish.
x=\frac{5\sqrt{33}-25}{2}
x=\frac{-25±5\sqrt{33}}{2} tenglamasini yeching, bunda ± musbat. -25 ni 5\sqrt{33} ga qo'shish.
x=\frac{-5\sqrt{33}-25}{2}
x=\frac{-25±5\sqrt{33}}{2} tenglamasini yeching, bunda ± manfiy. -25 dan 5\sqrt{33} ni ayirish.
x^{2}+25x-50=\left(x-\frac{5\sqrt{33}-25}{2}\right)\left(x-\frac{-5\sqrt{33}-25}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-25+5\sqrt{33}}{2} ga va x_{2} uchun \frac{-25-5\sqrt{33}}{2} ga bo‘ling.