Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+24x-23=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-24±\sqrt{24^{2}-4\left(-23\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 24 ni b va -23 ni c bilan almashtiring.
x=\frac{-24±\sqrt{576-4\left(-23\right)}}{2}
24 kvadratini chiqarish.
x=\frac{-24±\sqrt{576+92}}{2}
-4 ni -23 marotabaga ko'paytirish.
x=\frac{-24±\sqrt{668}}{2}
576 ni 92 ga qo'shish.
x=\frac{-24±2\sqrt{167}}{2}
668 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{167}-24}{2}
x=\frac{-24±2\sqrt{167}}{2} tenglamasini yeching, bunda ± musbat. -24 ni 2\sqrt{167} ga qo'shish.
x=\sqrt{167}-12
-24+2\sqrt{167} ni 2 ga bo'lish.
x=\frac{-2\sqrt{167}-24}{2}
x=\frac{-24±2\sqrt{167}}{2} tenglamasini yeching, bunda ± manfiy. -24 dan 2\sqrt{167} ni ayirish.
x=-\sqrt{167}-12
-24-2\sqrt{167} ni 2 ga bo'lish.
x=\sqrt{167}-12 x=-\sqrt{167}-12
Tenglama yechildi.
x^{2}+24x-23=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+24x-23-\left(-23\right)=-\left(-23\right)
23 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+24x=-\left(-23\right)
O‘zidan -23 ayirilsa 0 qoladi.
x^{2}+24x=23
0 dan -23 ni ayirish.
x^{2}+24x+12^{2}=23+12^{2}
24 ni bo‘lish, x shartining koeffitsienti, 2 ga 12 olish uchun. Keyin, 12 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+24x+144=23+144
12 kvadratini chiqarish.
x^{2}+24x+144=167
23 ni 144 ga qo'shish.
\left(x+12\right)^{2}=167
x^{2}+24x+144 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+12\right)^{2}}=\sqrt{167}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+12=\sqrt{167} x+12=-\sqrt{167}
Qisqartirish.
x=\sqrt{167}-12 x=-\sqrt{167}-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
x^{2}+24x-23=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-24±\sqrt{24^{2}-4\left(-23\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 24 ni b va -23 ni c bilan almashtiring.
x=\frac{-24±\sqrt{576-4\left(-23\right)}}{2}
24 kvadratini chiqarish.
x=\frac{-24±\sqrt{576+92}}{2}
-4 ni -23 marotabaga ko'paytirish.
x=\frac{-24±\sqrt{668}}{2}
576 ni 92 ga qo'shish.
x=\frac{-24±2\sqrt{167}}{2}
668 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{167}-24}{2}
x=\frac{-24±2\sqrt{167}}{2} tenglamasini yeching, bunda ± musbat. -24 ni 2\sqrt{167} ga qo'shish.
x=\sqrt{167}-12
-24+2\sqrt{167} ni 2 ga bo'lish.
x=\frac{-2\sqrt{167}-24}{2}
x=\frac{-24±2\sqrt{167}}{2} tenglamasini yeching, bunda ± manfiy. -24 dan 2\sqrt{167} ni ayirish.
x=-\sqrt{167}-12
-24-2\sqrt{167} ni 2 ga bo'lish.
x=\sqrt{167}-12 x=-\sqrt{167}-12
Tenglama yechildi.
x^{2}+24x-23=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+24x-23-\left(-23\right)=-\left(-23\right)
23 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+24x=-\left(-23\right)
O‘zidan -23 ayirilsa 0 qoladi.
x^{2}+24x=23
0 dan -23 ni ayirish.
x^{2}+24x+12^{2}=23+12^{2}
24 ni bo‘lish, x shartining koeffitsienti, 2 ga 12 olish uchun. Keyin, 12 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+24x+144=23+144
12 kvadratini chiqarish.
x^{2}+24x+144=167
23 ni 144 ga qo'shish.
\left(x+12\right)^{2}=167
x^{2}+24x+144 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+12\right)^{2}}=\sqrt{167}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+12=\sqrt{167} x+12=-\sqrt{167}
Qisqartirish.
x=\sqrt{167}-12 x=-\sqrt{167}-12
Tenglamaning ikkala tarafidan 12 ni ayirish.