Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+20x+17=-3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+20x+17-\left(-3\right)=-3-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+20x+17-\left(-3\right)=0
O‘zidan -3 ayirilsa 0 qoladi.
x^{2}+20x+20=0
17 dan -3 ni ayirish.
x=\frac{-20±\sqrt{20^{2}-4\times 20}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 20 ni b va 20 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\times 20}}{2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400-80}}{2}
-4 ni 20 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{320}}{2}
400 ni -80 ga qo'shish.
x=\frac{-20±8\sqrt{5}}{2}
320 ning kvadrat ildizini chiqarish.
x=\frac{8\sqrt{5}-20}{2}
x=\frac{-20±8\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. -20 ni 8\sqrt{5} ga qo'shish.
x=4\sqrt{5}-10
-20+8\sqrt{5} ni 2 ga bo'lish.
x=\frac{-8\sqrt{5}-20}{2}
x=\frac{-20±8\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. -20 dan 8\sqrt{5} ni ayirish.
x=-4\sqrt{5}-10
-20-8\sqrt{5} ni 2 ga bo'lish.
x=4\sqrt{5}-10 x=-4\sqrt{5}-10
Tenglama yechildi.
x^{2}+20x+17=-3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+20x+17-17=-3-17
Tenglamaning ikkala tarafidan 17 ni ayirish.
x^{2}+20x=-3-17
O‘zidan 17 ayirilsa 0 qoladi.
x^{2}+20x=-20
-3 dan 17 ni ayirish.
x^{2}+20x+10^{2}=-20+10^{2}
20 ni bo‘lish, x shartining koeffitsienti, 2 ga 10 olish uchun. Keyin, 10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+20x+100=-20+100
10 kvadratini chiqarish.
x^{2}+20x+100=80
-20 ni 100 ga qo'shish.
\left(x+10\right)^{2}=80
x^{2}+20x+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+10\right)^{2}}=\sqrt{80}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+10=4\sqrt{5} x+10=-4\sqrt{5}
Qisqartirish.
x=4\sqrt{5}-10 x=-4\sqrt{5}-10
Tenglamaning ikkala tarafidan 10 ni ayirish.