Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+20x+100=-9
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+20x+100-\left(-9\right)=-9-\left(-9\right)
9 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+20x+100-\left(-9\right)=0
O‘zidan -9 ayirilsa 0 qoladi.
x^{2}+20x+109=0
100 dan -9 ni ayirish.
x=\frac{-20±\sqrt{20^{2}-4\times 109}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 20 ni b va 109 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\times 109}}{2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400-436}}{2}
-4 ni 109 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{-36}}{2}
400 ni -436 ga qo'shish.
x=\frac{-20±6i}{2}
-36 ning kvadrat ildizini chiqarish.
x=\frac{-20+6i}{2}
x=\frac{-20±6i}{2} tenglamasini yeching, bunda ± musbat. -20 ni 6i ga qo'shish.
x=-10+3i
-20+6i ni 2 ga bo'lish.
x=\frac{-20-6i}{2}
x=\frac{-20±6i}{2} tenglamasini yeching, bunda ± manfiy. -20 dan 6i ni ayirish.
x=-10-3i
-20-6i ni 2 ga bo'lish.
x=-10+3i x=-10-3i
Tenglama yechildi.
\left(x+10\right)^{2}=-9
x^{2}+20x+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+10\right)^{2}}=\sqrt{-9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+10=3i x+10=-3i
Qisqartirish.
x=-10+3i x=-10-3i
Tenglamaning ikkala tarafidan 10 ni ayirish.