Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+19x+14=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-19±\sqrt{19^{2}-4\times 14}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-19±\sqrt{361-4\times 14}}{2}
19 kvadratini chiqarish.
x=\frac{-19±\sqrt{361-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-19±\sqrt{305}}{2}
361 ni -56 ga qo'shish.
x=\frac{\sqrt{305}-19}{2}
x=\frac{-19±\sqrt{305}}{2} tenglamasini yeching, bunda ± musbat. -19 ni \sqrt{305} ga qo'shish.
x=\frac{-\sqrt{305}-19}{2}
x=\frac{-19±\sqrt{305}}{2} tenglamasini yeching, bunda ± manfiy. -19 dan \sqrt{305} ni ayirish.
x^{2}+19x+14=\left(x-\frac{\sqrt{305}-19}{2}\right)\left(x-\frac{-\sqrt{305}-19}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-19+\sqrt{305}}{2} ga va x_{2} uchun \frac{-19-\sqrt{305}}{2} ga bo‘ling.