Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+19x+100=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-19±\sqrt{19^{2}-4\times 100}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 19 ni b va 100 ni c bilan almashtiring.
x=\frac{-19±\sqrt{361-4\times 100}}{2}
19 kvadratini chiqarish.
x=\frac{-19±\sqrt{361-400}}{2}
-4 ni 100 marotabaga ko'paytirish.
x=\frac{-19±\sqrt{-39}}{2}
361 ni -400 ga qo'shish.
x=\frac{-19±\sqrt{39}i}{2}
-39 ning kvadrat ildizini chiqarish.
x=\frac{-19+\sqrt{39}i}{2}
x=\frac{-19±\sqrt{39}i}{2} tenglamasini yeching, bunda ± musbat. -19 ni i\sqrt{39} ga qo'shish.
x=\frac{-\sqrt{39}i-19}{2}
x=\frac{-19±\sqrt{39}i}{2} tenglamasini yeching, bunda ± manfiy. -19 dan i\sqrt{39} ni ayirish.
x=\frac{-19+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-19}{2}
Tenglama yechildi.
x^{2}+19x+100=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+19x+100-100=-100
Tenglamaning ikkala tarafidan 100 ni ayirish.
x^{2}+19x=-100
O‘zidan 100 ayirilsa 0 qoladi.
x^{2}+19x+\left(\frac{19}{2}\right)^{2}=-100+\left(\frac{19}{2}\right)^{2}
19 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{19}{2} olish uchun. Keyin, \frac{19}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+19x+\frac{361}{4}=-100+\frac{361}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{19}{2} kvadratini chiqarish.
x^{2}+19x+\frac{361}{4}=-\frac{39}{4}
-100 ni \frac{361}{4} ga qo'shish.
\left(x+\frac{19}{2}\right)^{2}=-\frac{39}{4}
x^{2}+19x+\frac{361}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{19}{2}\right)^{2}}=\sqrt{-\frac{39}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{19}{2}=\frac{\sqrt{39}i}{2} x+\frac{19}{2}=-\frac{\sqrt{39}i}{2}
Qisqartirish.
x=\frac{-19+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-19}{2}
Tenglamaning ikkala tarafidan \frac{19}{2} ni ayirish.