Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+16x+6=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-16±\sqrt{16^{2}-4\times 6}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-16±\sqrt{256-4\times 6}}{2}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256-24}}{2}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{232}}{2}
256 ni -24 ga qo'shish.
x=\frac{-16±2\sqrt{58}}{2}
232 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{58}-16}{2}
x=\frac{-16±2\sqrt{58}}{2} tenglamasini yeching, bunda ± musbat. -16 ni 2\sqrt{58} ga qo'shish.
x=\sqrt{58}-8
-16+2\sqrt{58} ni 2 ga bo'lish.
x=\frac{-2\sqrt{58}-16}{2}
x=\frac{-16±2\sqrt{58}}{2} tenglamasini yeching, bunda ± manfiy. -16 dan 2\sqrt{58} ni ayirish.
x=-\sqrt{58}-8
-16-2\sqrt{58} ni 2 ga bo'lish.
x^{2}+16x+6=\left(x-\left(\sqrt{58}-8\right)\right)\left(x-\left(-\sqrt{58}-8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -8+\sqrt{58} ga va x_{2} uchun -8-\sqrt{58} ga bo‘ling.