Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+16x+4=-10
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+16x+4-\left(-10\right)=-10-\left(-10\right)
10 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+16x+4-\left(-10\right)=0
O‘zidan -10 ayirilsa 0 qoladi.
x^{2}+16x+14=0
4 dan -10 ni ayirish.
x=\frac{-16±\sqrt{16^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 16 ni b va 14 ni c bilan almashtiring.
x=\frac{-16±\sqrt{256-4\times 14}}{2}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{200}}{2}
256 ni -56 ga qo'shish.
x=\frac{-16±10\sqrt{2}}{2}
200 ning kvadrat ildizini chiqarish.
x=\frac{10\sqrt{2}-16}{2}
x=\frac{-16±10\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. -16 ni 10\sqrt{2} ga qo'shish.
x=5\sqrt{2}-8
-16+10\sqrt{2} ni 2 ga bo'lish.
x=\frac{-10\sqrt{2}-16}{2}
x=\frac{-16±10\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. -16 dan 10\sqrt{2} ni ayirish.
x=-5\sqrt{2}-8
-16-10\sqrt{2} ni 2 ga bo'lish.
x=5\sqrt{2}-8 x=-5\sqrt{2}-8
Tenglama yechildi.
x^{2}+16x+4=-10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+16x+4-4=-10-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
x^{2}+16x=-10-4
O‘zidan 4 ayirilsa 0 qoladi.
x^{2}+16x=-14
-10 dan 4 ni ayirish.
x^{2}+16x+8^{2}=-14+8^{2}
16 ni bo‘lish, x shartining koeffitsienti, 2 ga 8 olish uchun. Keyin, 8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+16x+64=-14+64
8 kvadratini chiqarish.
x^{2}+16x+64=50
-14 ni 64 ga qo'shish.
\left(x+8\right)^{2}=50
x^{2}+16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+8\right)^{2}}=\sqrt{50}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+8=5\sqrt{2} x+8=-5\sqrt{2}
Qisqartirish.
x=5\sqrt{2}-8 x=-5\sqrt{2}-8
Tenglamaning ikkala tarafidan 8 ni ayirish.