Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+15x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-15±\sqrt{15^{2}-4\left(-2\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 15 ni b va -2 ni c bilan almashtiring.
x=\frac{-15±\sqrt{225-4\left(-2\right)}}{2}
15 kvadratini chiqarish.
x=\frac{-15±\sqrt{225+8}}{2}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{233}}{2}
225 ni 8 ga qo'shish.
x=\frac{\sqrt{233}-15}{2}
x=\frac{-15±\sqrt{233}}{2} tenglamasini yeching, bunda ± musbat. -15 ni \sqrt{233} ga qo'shish.
x=\frac{-\sqrt{233}-15}{2}
x=\frac{-15±\sqrt{233}}{2} tenglamasini yeching, bunda ± manfiy. -15 dan \sqrt{233} ni ayirish.
x=\frac{\sqrt{233}-15}{2} x=\frac{-\sqrt{233}-15}{2}
Tenglama yechildi.
x^{2}+15x-2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+15x-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+15x=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
x^{2}+15x=2
0 dan -2 ni ayirish.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=2+\left(\frac{15}{2}\right)^{2}
15 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{15}{2} olish uchun. Keyin, \frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+15x+\frac{225}{4}=2+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{15}{2} kvadratini chiqarish.
x^{2}+15x+\frac{225}{4}=\frac{233}{4}
2 ni \frac{225}{4} ga qo'shish.
\left(x+\frac{15}{2}\right)^{2}=\frac{233}{4}
x^{2}+15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{233}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{15}{2}=\frac{\sqrt{233}}{2} x+\frac{15}{2}=-\frac{\sqrt{233}}{2}
Qisqartirish.
x=\frac{\sqrt{233}-15}{2} x=\frac{-\sqrt{233}-15}{2}
Tenglamaning ikkala tarafidan \frac{15}{2} ni ayirish.