Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+14x-38=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-14±\sqrt{14^{2}-4\left(-38\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 14 ni b va -38 ni c bilan almashtiring.
x=\frac{-14±\sqrt{196-4\left(-38\right)}}{2}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196+152}}{2}
-4 ni -38 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{348}}{2}
196 ni 152 ga qo'shish.
x=\frac{-14±2\sqrt{87}}{2}
348 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{87}-14}{2}
x=\frac{-14±2\sqrt{87}}{2} tenglamasini yeching, bunda ± musbat. -14 ni 2\sqrt{87} ga qo'shish.
x=\sqrt{87}-7
-14+2\sqrt{87} ni 2 ga bo'lish.
x=\frac{-2\sqrt{87}-14}{2}
x=\frac{-14±2\sqrt{87}}{2} tenglamasini yeching, bunda ± manfiy. -14 dan 2\sqrt{87} ni ayirish.
x=-\sqrt{87}-7
-14-2\sqrt{87} ni 2 ga bo'lish.
x=\sqrt{87}-7 x=-\sqrt{87}-7
Tenglama yechildi.
x^{2}+14x-38=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+14x-38-\left(-38\right)=-\left(-38\right)
38 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+14x=-\left(-38\right)
O‘zidan -38 ayirilsa 0 qoladi.
x^{2}+14x=38
0 dan -38 ni ayirish.
x^{2}+14x+7^{2}=38+7^{2}
14 ni bo‘lish, x shartining koeffitsienti, 2 ga 7 olish uchun. Keyin, 7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+14x+49=38+49
7 kvadratini chiqarish.
x^{2}+14x+49=87
38 ni 49 ga qo'shish.
\left(x+7\right)^{2}=87
x^{2}+14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+7\right)^{2}}=\sqrt{87}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+7=\sqrt{87} x+7=-\sqrt{87}
Qisqartirish.
x=\sqrt{87}-7 x=-\sqrt{87}-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x^{2}+14x-38=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-14±\sqrt{14^{2}-4\left(-38\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 14 ni b va -38 ni c bilan almashtiring.
x=\frac{-14±\sqrt{196-4\left(-38\right)}}{2}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196+152}}{2}
-4 ni -38 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{348}}{2}
196 ni 152 ga qo'shish.
x=\frac{-14±2\sqrt{87}}{2}
348 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{87}-14}{2}
x=\frac{-14±2\sqrt{87}}{2} tenglamasini yeching, bunda ± musbat. -14 ni 2\sqrt{87} ga qo'shish.
x=\sqrt{87}-7
-14+2\sqrt{87} ni 2 ga bo'lish.
x=\frac{-2\sqrt{87}-14}{2}
x=\frac{-14±2\sqrt{87}}{2} tenglamasini yeching, bunda ± manfiy. -14 dan 2\sqrt{87} ni ayirish.
x=-\sqrt{87}-7
-14-2\sqrt{87} ni 2 ga bo'lish.
x=\sqrt{87}-7 x=-\sqrt{87}-7
Tenglama yechildi.
x^{2}+14x-38=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+14x-38-\left(-38\right)=-\left(-38\right)
38 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+14x=-\left(-38\right)
O‘zidan -38 ayirilsa 0 qoladi.
x^{2}+14x=38
0 dan -38 ni ayirish.
x^{2}+14x+7^{2}=38+7^{2}
14 ni bo‘lish, x shartining koeffitsienti, 2 ga 7 olish uchun. Keyin, 7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+14x+49=38+49
7 kvadratini chiqarish.
x^{2}+14x+49=87
38 ni 49 ga qo'shish.
\left(x+7\right)^{2}=87
x^{2}+14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+7\right)^{2}}=\sqrt{87}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+7=\sqrt{87} x+7=-\sqrt{87}
Qisqartirish.
x=\sqrt{87}-7 x=-\sqrt{87}-7
Tenglamaning ikkala tarafidan 7 ni ayirish.