x uchun yechish (complex solution)
x=-1+7\sqrt{3}i\approx -1+12,124355653i
x=-7\sqrt{3}i-1\approx -1-12,124355653i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+134+2x=-14
2x ni ikki tarafga qo’shing.
x^{2}+134+2x+14=0
14 ni ikki tarafga qo’shing.
x^{2}+148+2x=0
148 olish uchun 134 va 14'ni qo'shing.
x^{2}+2x+148=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\times 148}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va 148 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 148}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-592}}{2}
-4 ni 148 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-588}}{2}
4 ni -592 ga qo'shish.
x=\frac{-2±14\sqrt{3}i}{2}
-588 ning kvadrat ildizini chiqarish.
x=\frac{-2+14\sqrt{3}i}{2}
x=\frac{-2±14\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. -2 ni 14i\sqrt{3} ga qo'shish.
x=-1+7\sqrt{3}i
-2+14i\sqrt{3} ni 2 ga bo'lish.
x=\frac{-14\sqrt{3}i-2}{2}
x=\frac{-2±14\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 14i\sqrt{3} ni ayirish.
x=-7\sqrt{3}i-1
-2-14i\sqrt{3} ni 2 ga bo'lish.
x=-1+7\sqrt{3}i x=-7\sqrt{3}i-1
Tenglama yechildi.
x^{2}+134+2x=-14
2x ni ikki tarafga qo’shing.
x^{2}+2x=-14-134
Ikkala tarafdan 134 ni ayirish.
x^{2}+2x=-148
-148 olish uchun -14 dan 134 ni ayirish.
x^{2}+2x+1^{2}=-148+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=-148+1
1 kvadratini chiqarish.
x^{2}+2x+1=-147
-148 ni 1 ga qo'shish.
\left(x+1\right)^{2}=-147
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-147}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=7\sqrt{3}i x+1=-7\sqrt{3}i
Qisqartirish.
x=-1+7\sqrt{3}i x=-7\sqrt{3}i-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}