Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}=\frac{9}{6}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}=\frac{3}{2}
\frac{9}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}=\frac{\frac{3}{2}}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=\frac{3}{2\times 2}
\frac{\frac{3}{2}}{2} ni yagona kasrga aylantiring.
x^{2}=\frac{3}{4}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
x=\frac{\sqrt{3}}{2} x=-\frac{\sqrt{3}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2x^{2}=\frac{9}{6}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}=\frac{3}{2}
\frac{9}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
2x^{2}-\frac{3}{2}=0
Ikkala tarafdan \frac{3}{2} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-\frac{3}{2}\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -\frac{3}{2} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-\frac{3}{2}\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-\frac{3}{2}\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{12}}{2\times 2}
-8 ni -\frac{3}{2} marotabaga ko'paytirish.
x=\frac{0±2\sqrt{3}}{2\times 2}
12 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{3}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{3}}{2}
x=\frac{0±2\sqrt{3}}{4} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{3}}{2}
x=\frac{0±2\sqrt{3}}{4} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{3}}{2} x=-\frac{\sqrt{3}}{2}
Tenglama yechildi.