x uchun yechish
x=\frac{\sqrt{10}}{6}-\frac{1}{3}\approx 0,193712943
x=-\frac{\sqrt{10}}{6}-\frac{1}{3}\approx -0,86037961
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+\frac{2}{3}x-\frac{1}{6}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-\frac{1}{6}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, \frac{2}{3} ni b va -\frac{1}{6} ni c bilan almashtiring.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-\frac{1}{6}\right)}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{3} kvadratini chiqarish.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+\frac{2}{3}}}{2}
-4 ni -\frac{1}{6} marotabaga ko'paytirish.
x=\frac{-\frac{2}{3}±\sqrt{\frac{10}{9}}}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{9} ni \frac{2}{3} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2}
\frac{10}{9} ning kvadrat ildizini chiqarish.
x=\frac{\sqrt{10}-2}{2\times 3}
x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2} tenglamasini yeching, bunda ± musbat. -\frac{2}{3} ni \frac{\sqrt{10}}{3} ga qo'shish.
x=\frac{\sqrt{10}}{6}-\frac{1}{3}
\frac{-2+\sqrt{10}}{3} ni 2 ga bo'lish.
x=\frac{-\sqrt{10}-2}{2\times 3}
x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2} tenglamasini yeching, bunda ± manfiy. -\frac{2}{3} dan \frac{\sqrt{10}}{3} ni ayirish.
x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
\frac{-2-\sqrt{10}}{3} ni 2 ga bo'lish.
x=\frac{\sqrt{10}}{6}-\frac{1}{3} x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Tenglama yechildi.
x^{2}+\frac{2}{3}x-\frac{1}{6}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+\frac{2}{3}x-\frac{1}{6}-\left(-\frac{1}{6}\right)=-\left(-\frac{1}{6}\right)
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+\frac{2}{3}x=-\left(-\frac{1}{6}\right)
O‘zidan -\frac{1}{6} ayirilsa 0 qoladi.
x^{2}+\frac{2}{3}x=\frac{1}{6}
0 dan -\frac{1}{6} ni ayirish.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{6}+\left(\frac{1}{3}\right)^{2}
\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{3} olish uchun. Keyin, \frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{6}+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{3} kvadratini chiqarish.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{5}{18}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{6} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{3}\right)^{2}=\frac{5}{18}
x^{2}+\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{5}{18}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{3}=\frac{\sqrt{10}}{6} x+\frac{1}{3}=-\frac{\sqrt{10}}{6}
Qisqartirish.
x=\frac{\sqrt{10}}{6}-\frac{1}{3} x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Tenglamaning ikkala tarafidan \frac{1}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}