Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x=0
Ikkala tarafdan 4x ni ayirish.
x\left(x-4\right)=0
x omili.
x=0 x=4
Tenglamani yechish uchun x=0 va x-4=0 ni yeching.
x^{2}-4x=0
Ikkala tarafdan 4x ni ayirish.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±4}{2}
\left(-4\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{4±4}{2}
-4 ning teskarisi 4 ga teng.
x=\frac{8}{2}
x=\frac{4±4}{2} tenglamasini yeching, bunda ± musbat. 4 ni 4 ga qo'shish.
x=4
8 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{4±4}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 4 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=4 x=0
Tenglama yechildi.
x^{2}-4x=0
Ikkala tarafdan 4x ni ayirish.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=4
-2 kvadratini chiqarish.
\left(x-2\right)^{2}=4
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=2 x-2=-2
Qisqartirish.
x=4 x=0
2 ni tenglamaning ikkala tarafiga qo'shish.