Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=-\frac{3}{2}
-\frac{3}{2} olish uchun \frac{1}{2} dan 2 ni ayirish.
x=\frac{\sqrt{6}i}{2} x=-\frac{\sqrt{6}i}{2}
Tenglama yechildi.
x^{2}=-\frac{3}{2}
-\frac{3}{2} olish uchun \frac{1}{2} dan 2 ni ayirish.
x^{2}+\frac{3}{2}=0
\frac{3}{2} ni ikki tarafga qo’shing.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3}{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va \frac{3}{2} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times \frac{3}{2}}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-6}}{2}
-4 ni \frac{3}{2} marotabaga ko'paytirish.
x=\frac{0±\sqrt{6}i}{2}
-6 ning kvadrat ildizini chiqarish.
x=\frac{\sqrt{6}i}{2}
x=\frac{0±\sqrt{6}i}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{6}i}{2}
x=\frac{0±\sqrt{6}i}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{6}i}{2} x=-\frac{\sqrt{6}i}{2}
Tenglama yechildi.