Asosiy tarkibga oʻtish
p uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

p^{2}-3p+3=175
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p^{2}-3p+3-175=175-175
Tenglamaning ikkala tarafidan 175 ni ayirish.
p^{2}-3p+3-175=0
O‘zidan 175 ayirilsa 0 qoladi.
p^{2}-3p-172=0
3 dan 175 ni ayirish.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-172\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -172 ni c bilan almashtiring.
p=\frac{-\left(-3\right)±\sqrt{9-4\left(-172\right)}}{2}
-3 kvadratini chiqarish.
p=\frac{-\left(-3\right)±\sqrt{9+688}}{2}
-4 ni -172 marotabaga ko'paytirish.
p=\frac{-\left(-3\right)±\sqrt{697}}{2}
9 ni 688 ga qo'shish.
p=\frac{3±\sqrt{697}}{2}
-3 ning teskarisi 3 ga teng.
p=\frac{\sqrt{697}+3}{2}
p=\frac{3±\sqrt{697}}{2} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{697} ga qo'shish.
p=\frac{3-\sqrt{697}}{2}
p=\frac{3±\sqrt{697}}{2} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{697} ni ayirish.
p=\frac{\sqrt{697}+3}{2} p=\frac{3-\sqrt{697}}{2}
Tenglama yechildi.
p^{2}-3p+3=175
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
p^{2}-3p+3-3=175-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
p^{2}-3p=175-3
O‘zidan 3 ayirilsa 0 qoladi.
p^{2}-3p=172
175 dan 3 ni ayirish.
p^{2}-3p+\left(-\frac{3}{2}\right)^{2}=172+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}-3p+\frac{9}{4}=172+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
p^{2}-3p+\frac{9}{4}=\frac{697}{4}
172 ni \frac{9}{4} ga qo'shish.
\left(p-\frac{3}{2}\right)^{2}=\frac{697}{4}
p^{2}-3p+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p-\frac{3}{2}\right)^{2}}=\sqrt{\frac{697}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p-\frac{3}{2}=\frac{\sqrt{697}}{2} p-\frac{3}{2}=-\frac{\sqrt{697}}{2}
Qisqartirish.
p=\frac{\sqrt{697}+3}{2} p=\frac{3-\sqrt{697}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.