Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

m^{2}-13m+72=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 72}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -13 ni b va 72 ni c bilan almashtiring.
m=\frac{-\left(-13\right)±\sqrt{169-4\times 72}}{2}
-13 kvadratini chiqarish.
m=\frac{-\left(-13\right)±\sqrt{169-288}}{2}
-4 ni 72 marotabaga ko'paytirish.
m=\frac{-\left(-13\right)±\sqrt{-119}}{2}
169 ni -288 ga qo'shish.
m=\frac{-\left(-13\right)±\sqrt{119}i}{2}
-119 ning kvadrat ildizini chiqarish.
m=\frac{13±\sqrt{119}i}{2}
-13 ning teskarisi 13 ga teng.
m=\frac{13+\sqrt{119}i}{2}
m=\frac{13±\sqrt{119}i}{2} tenglamasini yeching, bunda ± musbat. 13 ni i\sqrt{119} ga qo'shish.
m=\frac{-\sqrt{119}i+13}{2}
m=\frac{13±\sqrt{119}i}{2} tenglamasini yeching, bunda ± manfiy. 13 dan i\sqrt{119} ni ayirish.
m=\frac{13+\sqrt{119}i}{2} m=\frac{-\sqrt{119}i+13}{2}
Tenglama yechildi.
m^{2}-13m+72=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
m^{2}-13m+72-72=-72
Tenglamaning ikkala tarafidan 72 ni ayirish.
m^{2}-13m=-72
O‘zidan 72 ayirilsa 0 qoladi.
m^{2}-13m+\left(-\frac{13}{2}\right)^{2}=-72+\left(-\frac{13}{2}\right)^{2}
-13 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{2} olish uchun. Keyin, -\frac{13}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-13m+\frac{169}{4}=-72+\frac{169}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{2} kvadratini chiqarish.
m^{2}-13m+\frac{169}{4}=-\frac{119}{4}
-72 ni \frac{169}{4} ga qo'shish.
\left(m-\frac{13}{2}\right)^{2}=-\frac{119}{4}
m^{2}-13m+\frac{169}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-\frac{13}{2}\right)^{2}}=\sqrt{-\frac{119}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-\frac{13}{2}=\frac{\sqrt{119}i}{2} m-\frac{13}{2}=-\frac{\sqrt{119}i}{2}
Qisqartirish.
m=\frac{13+\sqrt{119}i}{2} m=\frac{-\sqrt{119}i+13}{2}
\frac{13}{2} ni tenglamaning ikkala tarafiga qo'shish.