c uchun yechish
c=5\sqrt{6}+5\approx 17,247448714
c=5-5\sqrt{6}\approx -7,247448714
Baham ko'rish
Klipbordga nusxa olish
c^{2}-10c-125=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-125\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va -125 ni c bilan almashtiring.
c=\frac{-\left(-10\right)±\sqrt{100-4\left(-125\right)}}{2}
-10 kvadratini chiqarish.
c=\frac{-\left(-10\right)±\sqrt{100+500}}{2}
-4 ni -125 marotabaga ko'paytirish.
c=\frac{-\left(-10\right)±\sqrt{600}}{2}
100 ni 500 ga qo'shish.
c=\frac{-\left(-10\right)±10\sqrt{6}}{2}
600 ning kvadrat ildizini chiqarish.
c=\frac{10±10\sqrt{6}}{2}
-10 ning teskarisi 10 ga teng.
c=\frac{10\sqrt{6}+10}{2}
c=\frac{10±10\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. 10 ni 10\sqrt{6} ga qo'shish.
c=5\sqrt{6}+5
10+10\sqrt{6} ni 2 ga bo'lish.
c=\frac{10-10\sqrt{6}}{2}
c=\frac{10±10\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 10\sqrt{6} ni ayirish.
c=5-5\sqrt{6}
10-10\sqrt{6} ni 2 ga bo'lish.
c=5\sqrt{6}+5 c=5-5\sqrt{6}
Tenglama yechildi.
c^{2}-10c-125=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
c^{2}-10c-125-\left(-125\right)=-\left(-125\right)
125 ni tenglamaning ikkala tarafiga qo'shish.
c^{2}-10c=-\left(-125\right)
O‘zidan -125 ayirilsa 0 qoladi.
c^{2}-10c=125
0 dan -125 ni ayirish.
c^{2}-10c+\left(-5\right)^{2}=125+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
c^{2}-10c+25=125+25
-5 kvadratini chiqarish.
c^{2}-10c+25=150
125 ni 25 ga qo'shish.
\left(c-5\right)^{2}=150
c^{2}-10c+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(c-5\right)^{2}}=\sqrt{150}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
c-5=5\sqrt{6} c-5=-5\sqrt{6}
Qisqartirish.
c=5\sqrt{6}+5 c=5-5\sqrt{6}
5 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}