Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

36=x\left(x-3\right)
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
36=x^{2}-3x
x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x=36
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-3x-36=0
Ikkala tarafdan 36 ni ayirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-36\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -36 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-36\right)}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+144}}{2}
-4 ni -36 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{153}}{2}
9 ni 144 ga qo'shish.
x=\frac{-\left(-3\right)±3\sqrt{17}}{2}
153 ning kvadrat ildizini chiqarish.
x=\frac{3±3\sqrt{17}}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{3\sqrt{17}+3}{2}
x=\frac{3±3\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. 3 ni 3\sqrt{17} ga qo'shish.
x=\frac{3-3\sqrt{17}}{2}
x=\frac{3±3\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. 3 dan 3\sqrt{17} ni ayirish.
x=\frac{3\sqrt{17}+3}{2} x=\frac{3-3\sqrt{17}}{2}
Tenglama yechildi.
36=x\left(x-3\right)
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
36=x^{2}-3x
x ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x=36
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=36+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=36+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{153}{4}
36 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{153}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{3\sqrt{17}}{2} x-\frac{3}{2}=-\frac{3\sqrt{17}}{2}
Qisqartirish.
x=\frac{3\sqrt{17}+3}{2} x=\frac{3-3\sqrt{17}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.