Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
x_2 uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
x_2 uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5^{-5x+x_{2}+6}=1
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(5^{-5x+x_{2}+6})=\log(1)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(-5x+x_{2}+6\right)\log(5)=\log(1)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
-5x+x_{2}+6=\frac{\log(1)}{\log(5)}
Ikki tarafini \log(5) ga bo‘ling.
-5x+x_{2}+6=\log_{5}\left(1\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-5x=-\left(x_{2}+6\right)
Tenglamaning ikkala tarafidan x_{2}+6 ni ayirish.
x=-\frac{x_{2}+6}{-5}
Ikki tarafini -5 ga bo‘ling.
5^{x_{2}+6-5x}=1
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(5^{x_{2}+6-5x})=\log(1)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(x_{2}+6-5x\right)\log(5)=\log(1)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
x_{2}+6-5x=\frac{\log(1)}{\log(5)}
Ikki tarafini \log(5) ga bo‘ling.
x_{2}+6-5x=\log_{5}\left(1\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x_{2}=-\left(6-5x\right)
Tenglamaning ikkala tarafidan -5x+6 ni ayirish.