Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+2x+16=9
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+2x+16-9=9-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
x^{2}+2x+16-9=0
O‘zidan 9 ayirilsa 0 qoladi.
x^{2}+2x+7=0
16 dan 9 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\times 7}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va 7 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 7}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-28}}{2}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-24}}{2}
4 ni -28 ga qo'shish.
x=\frac{-2±2\sqrt{6}i}{2}
-24 ning kvadrat ildizini chiqarish.
x=\frac{-2+2\sqrt{6}i}{2}
x=\frac{-2±2\sqrt{6}i}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{6} ga qo'shish.
x=-1+\sqrt{6}i
-2+2i\sqrt{6} ni 2 ga bo'lish.
x=\frac{-2\sqrt{6}i-2}{2}
x=\frac{-2±2\sqrt{6}i}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{6} ni ayirish.
x=-\sqrt{6}i-1
-2-2i\sqrt{6} ni 2 ga bo'lish.
x=-1+\sqrt{6}i x=-\sqrt{6}i-1
Tenglama yechildi.
x^{2}+2x+16=9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+16-16=9-16
Tenglamaning ikkala tarafidan 16 ni ayirish.
x^{2}+2x=9-16
O‘zidan 16 ayirilsa 0 qoladi.
x^{2}+2x=-7
9 dan 16 ni ayirish.
x^{2}+2x+1^{2}=-7+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=-7+1
1 kvadratini chiqarish.
x^{2}+2x+1=-6
-7 ni 1 ga qo'shish.
\left(x+1\right)^{2}=-6
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{6}i x+1=-\sqrt{6}i
Qisqartirish.
x=-1+\sqrt{6}i x=-\sqrt{6}i-1
Tenglamaning ikkala tarafidan 1 ni ayirish.