Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
y uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
y uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2017^{x-y}=1
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(2017^{x-y})=\log(1)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(x-y\right)\log(2017)=\log(1)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
x-y=\frac{\log(1)}{\log(2017)}
Ikki tarafini \log(2017) ga bo‘ling.
x-y=\log_{2017}\left(1\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\left(-y\right)
Tenglamaning ikkala tarafidan -y ni ayirish.
2017^{-y+x}=1
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(2017^{-y+x})=\log(1)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(-y+x\right)\log(2017)=\log(1)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
-y+x=\frac{\log(1)}{\log(2017)}
Ikki tarafini \log(2017) ga bo‘ling.
-y+x=\log_{2017}\left(1\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
-y=-x
Tenglamaning ikkala tarafidan x ni ayirish.
y=-\frac{x}{-1}
Ikki tarafini -1 ga bo‘ling.