Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

400=x\left(x-6\right)
2 daraja ko‘rsatkichini 20 ga hisoblang va 400 ni qiymatni oling.
400=x^{2}-6x
x ga x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-6x=400
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-6x-400=0
Ikkala tarafdan 400 ni ayirish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-400\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va -400 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-400\right)}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+1600}}{2}
-4 ni -400 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{1636}}{2}
36 ni 1600 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{409}}{2}
1636 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{409}}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{2\sqrt{409}+6}{2}
x=\frac{6±2\sqrt{409}}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{409} ga qo'shish.
x=\sqrt{409}+3
6+2\sqrt{409} ni 2 ga bo'lish.
x=\frac{6-2\sqrt{409}}{2}
x=\frac{6±2\sqrt{409}}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{409} ni ayirish.
x=3-\sqrt{409}
6-2\sqrt{409} ni 2 ga bo'lish.
x=\sqrt{409}+3 x=3-\sqrt{409}
Tenglama yechildi.
400=x\left(x-6\right)
2 daraja ko‘rsatkichini 20 ga hisoblang va 400 ni qiymatni oling.
400=x^{2}-6x
x ga x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-6x=400
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-6x+\left(-3\right)^{2}=400+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=400+9
-3 kvadratini chiqarish.
x^{2}-6x+9=409
400 ni 9 ga qo'shish.
\left(x-3\right)^{2}=409
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{409}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=\sqrt{409} x-3=-\sqrt{409}
Qisqartirish.
x=\sqrt{409}+3 x=3-\sqrt{409}
3 ni tenglamaning ikkala tarafiga qo'shish.