Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

144+x^{2}=x
2 daraja ko‘rsatkichini 12 ga hisoblang va 144 ni qiymatni oling.
144+x^{2}-x=0
Ikkala tarafdan x ni ayirish.
x^{2}-x+144=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 144}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 144 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-576}}{2}
-4 ni 144 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-575}}{2}
1 ni -576 ga qo'shish.
x=\frac{-\left(-1\right)±5\sqrt{23}i}{2}
-575 ning kvadrat ildizini chiqarish.
x=\frac{1±5\sqrt{23}i}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{1+5\sqrt{23}i}{2}
x=\frac{1±5\sqrt{23}i}{2} tenglamasini yeching, bunda ± musbat. 1 ni 5i\sqrt{23} ga qo'shish.
x=\frac{-5\sqrt{23}i+1}{2}
x=\frac{1±5\sqrt{23}i}{2} tenglamasini yeching, bunda ± manfiy. 1 dan 5i\sqrt{23} ni ayirish.
x=\frac{1+5\sqrt{23}i}{2} x=\frac{-5\sqrt{23}i+1}{2}
Tenglama yechildi.
144+x^{2}=x
2 daraja ko‘rsatkichini 12 ga hisoblang va 144 ni qiymatni oling.
144+x^{2}-x=0
Ikkala tarafdan x ni ayirish.
x^{2}-x=-144
Ikkala tarafdan 144 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-144+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=-144+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=-\frac{575}{4}
-144 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=-\frac{575}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{575}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{5\sqrt{23}i}{2} x-\frac{1}{2}=-\frac{5\sqrt{23}i}{2}
Qisqartirish.
x=\frac{1+5\sqrt{23}i}{2} x=\frac{-5\sqrt{23}i+1}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.