Baholash
24xy^{2}
Kengaytirish
24xy^{2}
Baham ko'rish
Klipbordga nusxa olish
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x\left(x-2y\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-2y\right)^{3} kengaytirilishi uchun ishlating.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{2}-2xy\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x ga x-2y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{3}-4xy^{2}\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x^{2}-2xy ga x+2y ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x^{3}-4xy^{2} teskarisini topish uchun har birining teskarisini toping.
-6x^{2}y+12xy^{2}-8y^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-6x^{2}y+16xy^{2}-8y^{3}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
16xy^{2} ni olish uchun 12xy^{2} va 4xy^{2} ni birlashtirish.
-6x^{2}y+16xy^{2}-8y^{3}+6x^{2}y+8xy^{2}-\left(-2y\right)^{3}
2xy ga 3x+4y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16xy^{2}-8y^{3}+8xy^{2}-\left(-2y\right)^{3}
0 ni olish uchun -6x^{2}y va 6x^{2}y ni birlashtirish.
24xy^{2}-8y^{3}-\left(-2y\right)^{3}
24xy^{2} ni olish uchun 16xy^{2} va 8xy^{2} ni birlashtirish.
24xy^{2}-8y^{3}-\left(-2\right)^{3}y^{3}
\left(-2y\right)^{3} ni kengaytirish.
24xy^{2}-8y^{3}-\left(-8y^{3}\right)
3 daraja ko‘rsatkichini -2 ga hisoblang va -8 ni qiymatni oling.
24xy^{2}-8y^{3}+8y^{3}
-8y^{3} ning teskarisi 8y^{3} ga teng.
24xy^{2}
0 ni olish uchun -8y^{3} va 8y^{3} ni birlashtirish.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x\left(x-2y\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-2y\right)^{3} kengaytirilishi uchun ishlating.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{2}-2xy\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x ga x-2y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{3}-4xy^{2}\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x^{2}-2xy ga x+2y ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x^{3}-4xy^{2} teskarisini topish uchun har birining teskarisini toping.
-6x^{2}y+12xy^{2}-8y^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-6x^{2}y+16xy^{2}-8y^{3}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
16xy^{2} ni olish uchun 12xy^{2} va 4xy^{2} ni birlashtirish.
-6x^{2}y+16xy^{2}-8y^{3}+6x^{2}y+8xy^{2}-\left(-2y\right)^{3}
2xy ga 3x+4y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16xy^{2}-8y^{3}+8xy^{2}-\left(-2y\right)^{3}
0 ni olish uchun -6x^{2}y va 6x^{2}y ni birlashtirish.
24xy^{2}-8y^{3}-\left(-2y\right)^{3}
24xy^{2} ni olish uchun 16xy^{2} va 8xy^{2} ni birlashtirish.
24xy^{2}-8y^{3}-\left(-2\right)^{3}y^{3}
\left(-2y\right)^{3} ni kengaytirish.
24xy^{2}-8y^{3}-\left(-8y^{3}\right)
3 daraja ko‘rsatkichini -2 ga hisoblang va -8 ni qiymatni oling.
24xy^{2}-8y^{3}+8y^{3}
-8y^{3} ning teskarisi 8y^{3} ga teng.
24xy^{2}
0 ni olish uchun -8y^{3} va 8y^{3} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}