Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x\left(x-2y\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-2y\right)^{3} kengaytirilishi uchun ishlating.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{2}-2xy\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x ga x-2y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{3}-4xy^{2}\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x^{2}-2xy ga x+2y ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x^{3}-4xy^{2} teskarisini topish uchun har birining teskarisini toping.
-6x^{2}y+12xy^{2}-8y^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-6x^{2}y+16xy^{2}-8y^{3}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
16xy^{2} ni olish uchun 12xy^{2} va 4xy^{2} ni birlashtirish.
-6x^{2}y+16xy^{2}-8y^{3}+6x^{2}y+8xy^{2}-\left(-2y\right)^{3}
2xy ga 3x+4y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16xy^{2}-8y^{3}+8xy^{2}-\left(-2y\right)^{3}
0 ni olish uchun -6x^{2}y va 6x^{2}y ni birlashtirish.
24xy^{2}-8y^{3}-\left(-2y\right)^{3}
24xy^{2} ni olish uchun 16xy^{2} va 8xy^{2} ni birlashtirish.
24xy^{2}-8y^{3}-\left(-2\right)^{3}y^{3}
\left(-2y\right)^{3} ni kengaytirish.
24xy^{2}-8y^{3}-\left(-8y^{3}\right)
3 daraja ko‘rsatkichini -2 ga hisoblang va -8 ni qiymatni oling.
24xy^{2}-8y^{3}+8y^{3}
-8y^{3} ning teskarisi 8y^{3} ga teng.
24xy^{2}
0 ni olish uchun -8y^{3} va 8y^{3} ni birlashtirish.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x\left(x-2y\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-2y\right)^{3} kengaytirilishi uchun ishlating.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{2}-2xy\right)\left(x+2y\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x ga x-2y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-\left(x^{3}-4xy^{2}\right)+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x^{2}-2xy ga x+2y ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-6x^{2}y+12xy^{2}-8y^{3}-x^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
x^{3}-4xy^{2} teskarisini topish uchun har birining teskarisini toping.
-6x^{2}y+12xy^{2}-8y^{3}+4xy^{2}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-6x^{2}y+16xy^{2}-8y^{3}+2xy\left(3x+4y\right)-\left(-2y\right)^{3}
16xy^{2} ni olish uchun 12xy^{2} va 4xy^{2} ni birlashtirish.
-6x^{2}y+16xy^{2}-8y^{3}+6x^{2}y+8xy^{2}-\left(-2y\right)^{3}
2xy ga 3x+4y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16xy^{2}-8y^{3}+8xy^{2}-\left(-2y\right)^{3}
0 ni olish uchun -6x^{2}y va 6x^{2}y ni birlashtirish.
24xy^{2}-8y^{3}-\left(-2y\right)^{3}
24xy^{2} ni olish uchun 16xy^{2} va 8xy^{2} ni birlashtirish.
24xy^{2}-8y^{3}-\left(-2\right)^{3}y^{3}
\left(-2y\right)^{3} ni kengaytirish.
24xy^{2}-8y^{3}-\left(-8y^{3}\right)
3 daraja ko‘rsatkichini -2 ga hisoblang va -8 ni qiymatni oling.
24xy^{2}-8y^{3}+8y^{3}
-8y^{3} ning teskarisi 8y^{3} ga teng.
24xy^{2}
0 ni olish uchun -8y^{3} va 8y^{3} ni birlashtirish.