Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
-6x ni olish uchun -4x va -2x ni birlashtirish.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
5 olish uchun 4 va 1'ni qo'shing.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
3x^{2}-6x+5=2x^{2}+6x+1+4
6x ni olish uchun 2x va 4x ni birlashtirish.
3x^{2}-6x+5=2x^{2}+6x+5
5 olish uchun 1 va 4'ni qo'shing.
3x^{2}-6x+5-2x^{2}=6x+5
Ikkala tarafdan 2x^{2} ni ayirish.
x^{2}-6x+5=6x+5
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}-6x+5-6x=5
Ikkala tarafdan 6x ni ayirish.
x^{2}-12x+5=5
-12x ni olish uchun -6x va -6x ni birlashtirish.
x^{2}-12x+5-5=0
Ikkala tarafdan 5 ni ayirish.
x^{2}-12x=0
0 olish uchun 5 dan 5 ni ayirish.
x\left(x-12\right)=0
x omili.
x=0 x=12
Tenglamani yechish uchun x=0 va x-12=0 ni yeching.
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
-6x ni olish uchun -4x va -2x ni birlashtirish.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
5 olish uchun 4 va 1'ni qo'shing.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
3x^{2}-6x+5=2x^{2}+6x+1+4
6x ni olish uchun 2x va 4x ni birlashtirish.
3x^{2}-6x+5=2x^{2}+6x+5
5 olish uchun 1 va 4'ni qo'shing.
3x^{2}-6x+5-2x^{2}=6x+5
Ikkala tarafdan 2x^{2} ni ayirish.
x^{2}-6x+5=6x+5
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}-6x+5-6x=5
Ikkala tarafdan 6x ni ayirish.
x^{2}-12x+5=5
-12x ni olish uchun -6x va -6x ni birlashtirish.
x^{2}-12x+5-5=0
Ikkala tarafdan 5 ni ayirish.
x^{2}-12x=0
0 olish uchun 5 dan 5 ni ayirish.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±12}{2}
\left(-12\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{12±12}{2}
-12 ning teskarisi 12 ga teng.
x=\frac{24}{2}
x=\frac{12±12}{2} tenglamasini yeching, bunda ± musbat. 12 ni 12 ga qo'shish.
x=12
24 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{12±12}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 12 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=12 x=0
Tenglama yechildi.
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
-6x ni olish uchun -4x va -2x ni birlashtirish.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
5 olish uchun 4 va 1'ni qo'shing.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
3x^{2}-6x+5=2x^{2}+6x+1+4
6x ni olish uchun 2x va 4x ni birlashtirish.
3x^{2}-6x+5=2x^{2}+6x+5
5 olish uchun 1 va 4'ni qo'shing.
3x^{2}-6x+5-2x^{2}=6x+5
Ikkala tarafdan 2x^{2} ni ayirish.
x^{2}-6x+5=6x+5
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}-6x+5-6x=5
Ikkala tarafdan 6x ni ayirish.
x^{2}-12x+5=5
-12x ni olish uchun -6x va -6x ni birlashtirish.
x^{2}-12x+5-5=0
Ikkala tarafdan 5 ni ayirish.
x^{2}-12x=0
0 olish uchun 5 dan 5 ni ayirish.
x^{2}-12x+\left(-6\right)^{2}=\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=36
-6 kvadratini chiqarish.
\left(x-6\right)^{2}=36
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{36}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=6 x-6=-6
Qisqartirish.
x=12 x=0
6 ni tenglamaning ikkala tarafiga qo'shish.