y uchun yechish
y=-\frac{\left(x+5\right)^{2}}{20}+95
x uchun yechish (complex solution)
x=-2\sqrt{475-5y}-5
x=2\sqrt{475-5y}-5
x uchun yechish
x=-2\sqrt{475-5y}-5
x=2\sqrt{475-5y}-5\text{, }y\leq 95
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+10x+25=-20\left(y-95\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+5\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+10x+25=-20y+1900
-20 ga y-95 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-20y+1900=x^{2}+10x+25
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-20y=x^{2}+10x+25-1900
Ikkala tarafdan 1900 ni ayirish.
-20y=x^{2}+10x-1875
-1875 olish uchun 25 dan 1900 ni ayirish.
\frac{-20y}{-20}=\frac{x^{2}+10x-1875}{-20}
Ikki tarafini -20 ga bo‘ling.
y=\frac{x^{2}+10x-1875}{-20}
-20 ga bo'lish -20 ga ko'paytirishni bekor qiladi.
y=-\frac{x^{2}}{20}-\frac{x}{2}+\frac{375}{4}
x^{2}+10x-1875 ni -20 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}