x uchun yechish
x = \frac{\sqrt{65} - 1}{4} \approx 1,765564437
x=\frac{-\sqrt{65}-1}{4}\approx -2,265564437
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+4x+4-x=\left(2x\right)^{2}-\left(x-2\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+3x+4=\left(2x\right)^{2}-\left(x-2\right)^{2}
3x ni olish uchun 4x va -x ni birlashtirish.
x^{2}+3x+4=2^{2}x^{2}-\left(x-2\right)^{2}
\left(2x\right)^{2} ni kengaytirish.
x^{2}+3x+4=4x^{2}-\left(x-2\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
x^{2}+3x+4=4x^{2}-\left(x^{2}-4x+4\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+3x+4=4x^{2}-x^{2}+4x-4
x^{2}-4x+4 teskarisini topish uchun har birining teskarisini toping.
x^{2}+3x+4=3x^{2}+4x-4
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
x^{2}+3x+4-3x^{2}=4x-4
Ikkala tarafdan 3x^{2} ni ayirish.
-2x^{2}+3x+4=4x-4
-2x^{2} ni olish uchun x^{2} va -3x^{2} ni birlashtirish.
-2x^{2}+3x+4-4x=-4
Ikkala tarafdan 4x ni ayirish.
-2x^{2}-x+4=-4
-x ni olish uchun 3x va -4x ni birlashtirish.
-2x^{2}-x+4+4=0
4 ni ikki tarafga qo’shing.
-2x^{2}-x+8=0
8 olish uchun 4 va 4'ni qo'shing.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)\times 8}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -1 ni b va 8 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+8\times 8}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+64}}{2\left(-2\right)}
8 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{65}}{2\left(-2\right)}
1 ni 64 ga qo'shish.
x=\frac{1±\sqrt{65}}{2\left(-2\right)}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{65}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{\sqrt{65}+1}{-4}
x=\frac{1±\sqrt{65}}{-4} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{65} ga qo'shish.
x=\frac{-\sqrt{65}-1}{4}
1+\sqrt{65} ni -4 ga bo'lish.
x=\frac{1-\sqrt{65}}{-4}
x=\frac{1±\sqrt{65}}{-4} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{65} ni ayirish.
x=\frac{\sqrt{65}-1}{4}
1-\sqrt{65} ni -4 ga bo'lish.
x=\frac{-\sqrt{65}-1}{4} x=\frac{\sqrt{65}-1}{4}
Tenglama yechildi.
x^{2}+4x+4-x=\left(2x\right)^{2}-\left(x-2\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+3x+4=\left(2x\right)^{2}-\left(x-2\right)^{2}
3x ni olish uchun 4x va -x ni birlashtirish.
x^{2}+3x+4=2^{2}x^{2}-\left(x-2\right)^{2}
\left(2x\right)^{2} ni kengaytirish.
x^{2}+3x+4=4x^{2}-\left(x-2\right)^{2}
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
x^{2}+3x+4=4x^{2}-\left(x^{2}-4x+4\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-2\right)^{2} kengaytirilishi uchun ishlating.
x^{2}+3x+4=4x^{2}-x^{2}+4x-4
x^{2}-4x+4 teskarisini topish uchun har birining teskarisini toping.
x^{2}+3x+4=3x^{2}+4x-4
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
x^{2}+3x+4-3x^{2}=4x-4
Ikkala tarafdan 3x^{2} ni ayirish.
-2x^{2}+3x+4=4x-4
-2x^{2} ni olish uchun x^{2} va -3x^{2} ni birlashtirish.
-2x^{2}+3x+4-4x=-4
Ikkala tarafdan 4x ni ayirish.
-2x^{2}-x+4=-4
-x ni olish uchun 3x va -4x ni birlashtirish.
-2x^{2}-x=-4-4
Ikkala tarafdan 4 ni ayirish.
-2x^{2}-x=-8
-8 olish uchun -4 dan 4 ni ayirish.
\frac{-2x^{2}-x}{-2}=-\frac{8}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{1}{-2}\right)x=-\frac{8}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{2}x=-\frac{8}{-2}
-1 ni -2 ga bo'lish.
x^{2}+\frac{1}{2}x=4
-8 ni -2 ga bo'lish.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=4+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{2}x+\frac{1}{16}=4+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{65}{16}
4 ni \frac{1}{16} ga qo'shish.
\left(x+\frac{1}{4}\right)^{2}=\frac{65}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{65}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{4}=\frac{\sqrt{65}}{4} x+\frac{1}{4}=-\frac{\sqrt{65}}{4}
Qisqartirish.
x=\frac{\sqrt{65}-1}{4} x=\frac{-\sqrt{65}-1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}