m uchun yechish
m=\frac{2\sqrt{21}}{3}-2\approx 1,055050463
m=-\frac{2\sqrt{21}}{3}-2\approx -5,055050463
Baham ko'rish
Klipbordga nusxa olish
m^{2}-8m+16-4m\left(m+1\right)=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(m-4\right)^{2} kengaytirilishi uchun ishlating.
m^{2}-8m+16-4m^{2}-4m=0
-4m ga m+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3m^{2}-8m+16-4m=0
-3m^{2} ni olish uchun m^{2} va -4m^{2} ni birlashtirish.
-3m^{2}-12m+16=0
-12m ni olish uchun -8m va -4m ni birlashtirish.
m=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 16}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -12 ni b va 16 ni c bilan almashtiring.
m=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 16}}{2\left(-3\right)}
-12 kvadratini chiqarish.
m=\frac{-\left(-12\right)±\sqrt{144+12\times 16}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
m=\frac{-\left(-12\right)±\sqrt{144+192}}{2\left(-3\right)}
12 ni 16 marotabaga ko'paytirish.
m=\frac{-\left(-12\right)±\sqrt{336}}{2\left(-3\right)}
144 ni 192 ga qo'shish.
m=\frac{-\left(-12\right)±4\sqrt{21}}{2\left(-3\right)}
336 ning kvadrat ildizini chiqarish.
m=\frac{12±4\sqrt{21}}{2\left(-3\right)}
-12 ning teskarisi 12 ga teng.
m=\frac{12±4\sqrt{21}}{-6}
2 ni -3 marotabaga ko'paytirish.
m=\frac{4\sqrt{21}+12}{-6}
m=\frac{12±4\sqrt{21}}{-6} tenglamasini yeching, bunda ± musbat. 12 ni 4\sqrt{21} ga qo'shish.
m=-\frac{2\sqrt{21}}{3}-2
12+4\sqrt{21} ni -6 ga bo'lish.
m=\frac{12-4\sqrt{21}}{-6}
m=\frac{12±4\sqrt{21}}{-6} tenglamasini yeching, bunda ± manfiy. 12 dan 4\sqrt{21} ni ayirish.
m=\frac{2\sqrt{21}}{3}-2
12-4\sqrt{21} ni -6 ga bo'lish.
m=-\frac{2\sqrt{21}}{3}-2 m=\frac{2\sqrt{21}}{3}-2
Tenglama yechildi.
m^{2}-8m+16-4m\left(m+1\right)=0
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(m-4\right)^{2} kengaytirilishi uchun ishlating.
m^{2}-8m+16-4m^{2}-4m=0
-4m ga m+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3m^{2}-8m+16-4m=0
-3m^{2} ni olish uchun m^{2} va -4m^{2} ni birlashtirish.
-3m^{2}-12m+16=0
-12m ni olish uchun -8m va -4m ni birlashtirish.
-3m^{2}-12m=-16
Ikkala tarafdan 16 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-3m^{2}-12m}{-3}=-\frac{16}{-3}
Ikki tarafini -3 ga bo‘ling.
m^{2}+\left(-\frac{12}{-3}\right)m=-\frac{16}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
m^{2}+4m=-\frac{16}{-3}
-12 ni -3 ga bo'lish.
m^{2}+4m=\frac{16}{3}
-16 ni -3 ga bo'lish.
m^{2}+4m+2^{2}=\frac{16}{3}+2^{2}
4 ni bo‘lish, x shartining koeffitsienti, 2 ga 2 olish uchun. Keyin, 2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}+4m+4=\frac{16}{3}+4
2 kvadratini chiqarish.
m^{2}+4m+4=\frac{28}{3}
\frac{16}{3} ni 4 ga qo'shish.
\left(m+2\right)^{2}=\frac{28}{3}
m^{2}+4m+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m+2\right)^{2}}=\sqrt{\frac{28}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m+2=\frac{2\sqrt{21}}{3} m+2=-\frac{2\sqrt{21}}{3}
Qisqartirish.
m=\frac{2\sqrt{21}}{3}-2 m=-\frac{2\sqrt{21}}{3}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}