a uchun yechish (complex solution)
a\in \mathrm{C}
b uchun yechish (complex solution)
b\in \mathrm{C}
a uchun yechish
a\in \mathrm{R}
b uchun yechish
b\in \mathrm{R}
Viktorina
Algebra
5xshash muammolar:
{ \left(a+b \right) }^{ 2 } = \left( a+b \right) \left( a+b \right) =
Baham ko'rish
Klipbordga nusxa olish
\left(a+b\right)^{2}=\left(a+b\right)^{2}
\left(a+b\right)^{2} hosil qilish uchun a+b va a+b ni ko'paytirish.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(a+b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(a+b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+2ab+b^{2}-a^{2}=2ab+b^{2}
Ikkala tarafdan a^{2} ni ayirish.
2ab+b^{2}=2ab+b^{2}
0 ni olish uchun a^{2} va -a^{2} ni birlashtirish.
2ab+b^{2}-2ab=b^{2}
Ikkala tarafdan 2ab ni ayirish.
b^{2}=b^{2}
0 ni olish uchun 2ab va -2ab ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
a\in \mathrm{C}
Bu har qanday a uchun to‘g‘ri.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
\left(a+b\right)^{2} hosil qilish uchun a+b va a+b ni ko'paytirish.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(a+b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(a+b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+2ab+b^{2}-2ab=a^{2}+b^{2}
Ikkala tarafdan 2ab ni ayirish.
a^{2}+b^{2}=a^{2}+b^{2}
0 ni olish uchun 2ab va -2ab ni birlashtirish.
a^{2}+b^{2}-b^{2}=a^{2}
Ikkala tarafdan b^{2} ni ayirish.
a^{2}=a^{2}
0 ni olish uchun b^{2} va -b^{2} ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
b\in \mathrm{C}
Bu har qanday b uchun to‘g‘ri.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
\left(a+b\right)^{2} hosil qilish uchun a+b va a+b ni ko'paytirish.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(a+b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(a+b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+2ab+b^{2}-a^{2}=2ab+b^{2}
Ikkala tarafdan a^{2} ni ayirish.
2ab+b^{2}=2ab+b^{2}
0 ni olish uchun a^{2} va -a^{2} ni birlashtirish.
2ab+b^{2}-2ab=b^{2}
Ikkala tarafdan 2ab ni ayirish.
b^{2}=b^{2}
0 ni olish uchun 2ab va -2ab ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
a\in \mathrm{R}
Bu har qanday a uchun to‘g‘ri.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
\left(a+b\right)^{2} hosil qilish uchun a+b va a+b ni ko'paytirish.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(a+b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
\left(p+q\right)^{2}=p^{2}+2pq+q^{2} binom teoremasini \left(a+b\right)^{2} kengaytirilishi uchun ishlating.
a^{2}+2ab+b^{2}-2ab=a^{2}+b^{2}
Ikkala tarafdan 2ab ni ayirish.
a^{2}+b^{2}=a^{2}+b^{2}
0 ni olish uchun 2ab va -2ab ni birlashtirish.
a^{2}+b^{2}-b^{2}=a^{2}
Ikkala tarafdan b^{2} ni ayirish.
a^{2}=a^{2}
0 ni olish uchun b^{2} va -b^{2} ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
b\in \mathrm{R}
Bu har qanday b uchun to‘g‘ri.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}