x uchun yechish
x=\frac{2}{7}\approx 0,285714286
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
7^{2}x^{2}-14x=0
\left(7x\right)^{2} ni kengaytirish.
49x^{2}-14x=0
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
x\left(49x-14\right)=0
x omili.
x=0 x=\frac{2}{7}
Tenglamani yechish uchun x=0 va 49x-14=0 ni yeching.
7^{2}x^{2}-14x=0
\left(7x\right)^{2} ni kengaytirish.
49x^{2}-14x=0
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, -14 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±14}{2\times 49}
\left(-14\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{14±14}{2\times 49}
-14 ning teskarisi 14 ga teng.
x=\frac{14±14}{98}
2 ni 49 marotabaga ko'paytirish.
x=\frac{28}{98}
x=\frac{14±14}{98} tenglamasini yeching, bunda ± musbat. 14 ni 14 ga qo'shish.
x=\frac{2}{7}
\frac{28}{98} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{98}
x=\frac{14±14}{98} tenglamasini yeching, bunda ± manfiy. 14 dan 14 ni ayirish.
x=0
0 ni 98 ga bo'lish.
x=\frac{2}{7} x=0
Tenglama yechildi.
7^{2}x^{2}-14x=0
\left(7x\right)^{2} ni kengaytirish.
49x^{2}-14x=0
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
\frac{49x^{2}-14x}{49}=\frac{0}{49}
Ikki tarafini 49 ga bo‘ling.
x^{2}+\left(-\frac{14}{49}\right)x=\frac{0}{49}
49 ga bo'lish 49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{7}x=\frac{0}{49}
\frac{-14}{49} ulushini 7 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{7}x=0
0 ni 49 ga bo'lish.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=\left(-\frac{1}{7}\right)^{2}
-\frac{2}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{7} olish uchun. Keyin, -\frac{1}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{1}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{7} kvadratini chiqarish.
\left(x-\frac{1}{7}\right)^{2}=\frac{1}{49}
x^{2}-\frac{2}{7}x+\frac{1}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{\frac{1}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{7}=\frac{1}{7} x-\frac{1}{7}=-\frac{1}{7}
Qisqartirish.
x=\frac{2}{7} x=0
\frac{1}{7} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}