Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

7^{2}x^{2}-14x=0
\left(7x\right)^{2} ni kengaytirish.
49x^{2}-14x=0
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
x\left(49x-14\right)=0
x omili.
x=0 x=\frac{2}{7}
Tenglamani yechish uchun x=0 va 49x-14=0 ni yeching.
7^{2}x^{2}-14x=0
\left(7x\right)^{2} ni kengaytirish.
49x^{2}-14x=0
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, -14 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±14}{2\times 49}
\left(-14\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{14±14}{2\times 49}
-14 ning teskarisi 14 ga teng.
x=\frac{14±14}{98}
2 ni 49 marotabaga ko'paytirish.
x=\frac{28}{98}
x=\frac{14±14}{98} tenglamasini yeching, bunda ± musbat. 14 ni 14 ga qo'shish.
x=\frac{2}{7}
\frac{28}{98} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{98}
x=\frac{14±14}{98} tenglamasini yeching, bunda ± manfiy. 14 dan 14 ni ayirish.
x=0
0 ni 98 ga bo'lish.
x=\frac{2}{7} x=0
Tenglama yechildi.
7^{2}x^{2}-14x=0
\left(7x\right)^{2} ni kengaytirish.
49x^{2}-14x=0
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
\frac{49x^{2}-14x}{49}=\frac{0}{49}
Ikki tarafini 49 ga bo‘ling.
x^{2}+\left(-\frac{14}{49}\right)x=\frac{0}{49}
49 ga bo'lish 49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{7}x=\frac{0}{49}
\frac{-14}{49} ulushini 7 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{7}x=0
0 ni 49 ga bo'lish.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=\left(-\frac{1}{7}\right)^{2}
-\frac{2}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{7} olish uchun. Keyin, -\frac{1}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{1}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{7} kvadratini chiqarish.
\left(x-\frac{1}{7}\right)^{2}=\frac{1}{49}
x^{2}-\frac{2}{7}x+\frac{1}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{\frac{1}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{7}=\frac{1}{7} x-\frac{1}{7}=-\frac{1}{7}
Qisqartirish.
x=\frac{2}{7} x=0
\frac{1}{7} ni tenglamaning ikkala tarafiga qo'shish.