x uchun yechish
x=1
x=-\frac{1}{5}=-0,2
Grafik
Baham ko'rish
Klipbordga nusxa olish
25x^{2}-20x+4=9
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-9=0
Ikkala tarafdan 9 ni ayirish.
25x^{2}-20x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
5x^{2}-4x-1=0
Ikki tarafini 5 ga bo‘ling.
a+b=-4 ab=5\left(-1\right)=-5
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 5x^{2}+ax+bx-1 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-5 b=1
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(5x^{2}-5x\right)+\left(x-1\right)
5x^{2}-4x-1 ni \left(5x^{2}-5x\right)+\left(x-1\right) sifatida qaytadan yozish.
5x\left(x-1\right)+x-1
5x^{2}-5x ichida 5x ni ajrating.
\left(x-1\right)\left(5x+1\right)
Distributiv funktsiyasidan foydalangan holda x-1 umumiy terminini chiqaring.
x=1 x=-\frac{1}{5}
Tenglamani yechish uchun x-1=0 va 5x+1=0 ni yeching.
25x^{2}-20x+4=9
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x+4-9=0
Ikkala tarafdan 9 ni ayirish.
25x^{2}-20x-5=0
-5 olish uchun 4 dan 9 ni ayirish.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 25\left(-5\right)}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -20 ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 25\left(-5\right)}}{2\times 25}
-20 kvadratini chiqarish.
x=\frac{-\left(-20\right)±\sqrt{400-100\left(-5\right)}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{400+500}}{2\times 25}
-100 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{900}}{2\times 25}
400 ni 500 ga qo'shish.
x=\frac{-\left(-20\right)±30}{2\times 25}
900 ning kvadrat ildizini chiqarish.
x=\frac{20±30}{2\times 25}
-20 ning teskarisi 20 ga teng.
x=\frac{20±30}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{50}{50}
x=\frac{20±30}{50} tenglamasini yeching, bunda ± musbat. 20 ni 30 ga qo'shish.
x=1
50 ni 50 ga bo'lish.
x=-\frac{10}{50}
x=\frac{20±30}{50} tenglamasini yeching, bunda ± manfiy. 20 dan 30 ni ayirish.
x=-\frac{1}{5}
\frac{-10}{50} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=-\frac{1}{5}
Tenglama yechildi.
25x^{2}-20x+4=9
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(5x-2\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}-20x=9-4
Ikkala tarafdan 4 ni ayirish.
25x^{2}-20x=5
5 olish uchun 9 dan 4 ni ayirish.
\frac{25x^{2}-20x}{25}=\frac{5}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}+\left(-\frac{20}{25}\right)x=\frac{5}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{5}x=\frac{5}{25}
\frac{-20}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{4}{5}x=\frac{1}{5}
\frac{5}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=\frac{1}{5}+\left(-\frac{2}{5}\right)^{2}
-\frac{4}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{5} olish uchun. Keyin, -\frac{2}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{1}{5}+\frac{4}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{5} kvadratini chiqarish.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{9}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{5} ni \frac{4}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{2}{5}\right)^{2}=\frac{9}{25}
x^{2}-\frac{4}{5}x+\frac{4}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{5}=\frac{3}{5} x-\frac{2}{5}=-\frac{3}{5}
Qisqartirish.
x=1 x=-\frac{1}{5}
\frac{2}{5} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}