Baholash
21\left(x^{2}-y^{2}\right)
Kengaytirish
21x^{2}-21y^{2}
Baham ko'rish
Klipbordga nusxa olish
25x^{2}+20xy+4y^{2}-\left(2x+5y\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5x+2y\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}+20xy+4y^{2}-\left(4x^{2}+20xy+25y^{2}\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+5y\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}+20xy+4y^{2}-4x^{2}-20xy-25y^{2}
4x^{2}+20xy+25y^{2} teskarisini topish uchun har birining teskarisini toping.
21x^{2}+20xy+4y^{2}-20xy-25y^{2}
21x^{2} ni olish uchun 25x^{2} va -4x^{2} ni birlashtirish.
21x^{2}+4y^{2}-25y^{2}
0 ni olish uchun 20xy va -20xy ni birlashtirish.
21x^{2}-21y^{2}
-21y^{2} ni olish uchun 4y^{2} va -25y^{2} ni birlashtirish.
25x^{2}+20xy+4y^{2}-\left(2x+5y\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(5x+2y\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}+20xy+4y^{2}-\left(4x^{2}+20xy+25y^{2}\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(2x+5y\right)^{2} kengaytirilishi uchun ishlating.
25x^{2}+20xy+4y^{2}-4x^{2}-20xy-25y^{2}
4x^{2}+20xy+25y^{2} teskarisini topish uchun har birining teskarisini toping.
21x^{2}+20xy+4y^{2}-20xy-25y^{2}
21x^{2} ni olish uchun 25x^{2} va -4x^{2} ni birlashtirish.
21x^{2}+4y^{2}-25y^{2}
0 ni olish uchun 20xy va -20xy ni birlashtirish.
21x^{2}-21y^{2}
-21y^{2} ni olish uchun 4y^{2} va -25y^{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}