x uchun yechish
x=\frac{\sqrt{129}+2}{25}\approx 0,534312668
x=\frac{2-\sqrt{129}}{25}\approx -0,374312668
Grafik
Baham ko'rish
Klipbordga nusxa olish
5^{2}x^{2}-4x-5=0
\left(5x\right)^{2} ni kengaytirish.
25x^{2}-4x-5=0
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 25\left(-5\right)}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -4 ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 25\left(-5\right)}}{2\times 25}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-100\left(-5\right)}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+500}}{2\times 25}
-100 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{516}}{2\times 25}
16 ni 500 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{129}}{2\times 25}
516 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{129}}{2\times 25}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{129}}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{2\sqrt{129}+4}{50}
x=\frac{4±2\sqrt{129}}{50} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{129} ga qo'shish.
x=\frac{\sqrt{129}+2}{25}
4+2\sqrt{129} ni 50 ga bo'lish.
x=\frac{4-2\sqrt{129}}{50}
x=\frac{4±2\sqrt{129}}{50} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{129} ni ayirish.
x=\frac{2-\sqrt{129}}{25}
4-2\sqrt{129} ni 50 ga bo'lish.
x=\frac{\sqrt{129}+2}{25} x=\frac{2-\sqrt{129}}{25}
Tenglama yechildi.
5^{2}x^{2}-4x-5=0
\left(5x\right)^{2} ni kengaytirish.
25x^{2}-4x-5=0
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
25x^{2}-4x=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{25x^{2}-4x}{25}=\frac{5}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}-\frac{4}{25}x=\frac{5}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{25}x=\frac{1}{5}
\frac{5}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{4}{25}x+\left(-\frac{2}{25}\right)^{2}=\frac{1}{5}+\left(-\frac{2}{25}\right)^{2}
-\frac{4}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{25} olish uchun. Keyin, -\frac{2}{25} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{25}x+\frac{4}{625}=\frac{1}{5}+\frac{4}{625}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{25} kvadratini chiqarish.
x^{2}-\frac{4}{25}x+\frac{4}{625}=\frac{129}{625}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{5} ni \frac{4}{625} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{2}{25}\right)^{2}=\frac{129}{625}
x^{2}-\frac{4}{25}x+\frac{4}{625} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{25}\right)^{2}}=\sqrt{\frac{129}{625}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{25}=\frac{\sqrt{129}}{25} x-\frac{2}{25}=-\frac{\sqrt{129}}{25}
Qisqartirish.
x=\frac{\sqrt{129}+2}{25} x=\frac{2-\sqrt{129}}{25}
\frac{2}{25} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}