x uchun yechish (complex solution)
x=\frac{-1+\sqrt{15}i}{8}\approx -0,125+0,484122918i
x=\frac{-\sqrt{15}i-1}{8}\approx -0,125-0,484122918i
Grafik
Baham ko'rish
Klipbordga nusxa olish
4^{2}x^{2}+4x+4=0
\left(4x\right)^{2} ni kengaytirish.
16x^{2}+4x+4=0
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
x=\frac{-4±\sqrt{4^{2}-4\times 16\times 4}}{2\times 16}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 16 ni a, 4 ni b va 4 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\times 16\times 4}}{2\times 16}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-64\times 4}}{2\times 16}
-4 ni 16 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16-256}}{2\times 16}
-64 ni 4 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{-240}}{2\times 16}
16 ni -256 ga qo'shish.
x=\frac{-4±4\sqrt{15}i}{2\times 16}
-240 ning kvadrat ildizini chiqarish.
x=\frac{-4±4\sqrt{15}i}{32}
2 ni 16 marotabaga ko'paytirish.
x=\frac{-4+4\sqrt{15}i}{32}
x=\frac{-4±4\sqrt{15}i}{32} tenglamasini yeching, bunda ± musbat. -4 ni 4i\sqrt{15} ga qo'shish.
x=\frac{-1+\sqrt{15}i}{8}
-4+4i\sqrt{15} ni 32 ga bo'lish.
x=\frac{-4\sqrt{15}i-4}{32}
x=\frac{-4±4\sqrt{15}i}{32} tenglamasini yeching, bunda ± manfiy. -4 dan 4i\sqrt{15} ni ayirish.
x=\frac{-\sqrt{15}i-1}{8}
-4-4i\sqrt{15} ni 32 ga bo'lish.
x=\frac{-1+\sqrt{15}i}{8} x=\frac{-\sqrt{15}i-1}{8}
Tenglama yechildi.
4^{2}x^{2}+4x+4=0
\left(4x\right)^{2} ni kengaytirish.
16x^{2}+4x+4=0
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
16x^{2}+4x=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{16x^{2}+4x}{16}=-\frac{4}{16}
Ikki tarafini 16 ga bo‘ling.
x^{2}+\frac{4}{16}x=-\frac{4}{16}
16 ga bo'lish 16 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{4}x=-\frac{4}{16}
\frac{4}{16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{4}x=-\frac{1}{4}
\frac{-4}{16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{8}\right)^{2}
\frac{1}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{8} olish uchun. Keyin, \frac{1}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{1}{4}+\frac{1}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{8} kvadratini chiqarish.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{15}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{4} ni \frac{1}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{8}\right)^{2}=-\frac{15}{64}
x^{2}+\frac{1}{4}x+\frac{1}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{-\frac{15}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{8}=\frac{\sqrt{15}i}{8} x+\frac{1}{8}=-\frac{\sqrt{15}i}{8}
Qisqartirish.
x=\frac{-1+\sqrt{15}i}{8} x=\frac{-\sqrt{15}i-1}{8}
Tenglamaning ikkala tarafidan \frac{1}{8} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}