Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}-30x+25-\left(4x-2\right)^{2}=4\left(9-10x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-5\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-30x+25-\left(16x^{2}-16x+4\right)=4\left(9-10x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4x-2\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-30x+25-16x^{2}+16x-4=4\left(9-10x\right)
16x^{2}-16x+4 teskarisini topish uchun har birining teskarisini toping.
-7x^{2}-30x+25+16x-4=4\left(9-10x\right)
-7x^{2} ni olish uchun 9x^{2} va -16x^{2} ni birlashtirish.
-7x^{2}-14x+25-4=4\left(9-10x\right)
-14x ni olish uchun -30x va 16x ni birlashtirish.
-7x^{2}-14x+21=4\left(9-10x\right)
21 olish uchun 25 dan 4 ni ayirish.
-7x^{2}-14x+21=36-40x
4 ga 9-10x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-7x^{2}-14x+21-36=-40x
Ikkala tarafdan 36 ni ayirish.
-7x^{2}-14x-15=-40x
-15 olish uchun 21 dan 36 ni ayirish.
-7x^{2}-14x-15+40x=0
40x ni ikki tarafga qo’shing.
-7x^{2}+26x-15=0
26x ni olish uchun -14x va 40x ni birlashtirish.
a+b=26 ab=-7\left(-15\right)=105
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -7x^{2}+ax+bx-15 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,105 3,35 5,21 7,15
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 105-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+105=106 3+35=38 5+21=26 7+15=22
Har bir juftlik yigʻindisini hisoblang.
a=21 b=5
Yechim – 26 yigʻindisini beruvchi juftlik.
\left(-7x^{2}+21x\right)+\left(5x-15\right)
-7x^{2}+26x-15 ni \left(-7x^{2}+21x\right)+\left(5x-15\right) sifatida qaytadan yozish.
7x\left(-x+3\right)-5\left(-x+3\right)
Birinchi guruhda 7x ni va ikkinchi guruhda -5 ni faktordan chiqaring.
\left(-x+3\right)\left(7x-5\right)
Distributiv funktsiyasidan foydalangan holda -x+3 umumiy terminini chiqaring.
x=3 x=\frac{5}{7}
Tenglamani yechish uchun -x+3=0 va 7x-5=0 ni yeching.
9x^{2}-30x+25-\left(4x-2\right)^{2}=4\left(9-10x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-5\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-30x+25-\left(16x^{2}-16x+4\right)=4\left(9-10x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4x-2\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-30x+25-16x^{2}+16x-4=4\left(9-10x\right)
16x^{2}-16x+4 teskarisini topish uchun har birining teskarisini toping.
-7x^{2}-30x+25+16x-4=4\left(9-10x\right)
-7x^{2} ni olish uchun 9x^{2} va -16x^{2} ni birlashtirish.
-7x^{2}-14x+25-4=4\left(9-10x\right)
-14x ni olish uchun -30x va 16x ni birlashtirish.
-7x^{2}-14x+21=4\left(9-10x\right)
21 olish uchun 25 dan 4 ni ayirish.
-7x^{2}-14x+21=36-40x
4 ga 9-10x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-7x^{2}-14x+21-36=-40x
Ikkala tarafdan 36 ni ayirish.
-7x^{2}-14x-15=-40x
-15 olish uchun 21 dan 36 ni ayirish.
-7x^{2}-14x-15+40x=0
40x ni ikki tarafga qo’shing.
-7x^{2}+26x-15=0
26x ni olish uchun -14x va 40x ni birlashtirish.
x=\frac{-26±\sqrt{26^{2}-4\left(-7\right)\left(-15\right)}}{2\left(-7\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -7 ni a, 26 ni b va -15 ni c bilan almashtiring.
x=\frac{-26±\sqrt{676-4\left(-7\right)\left(-15\right)}}{2\left(-7\right)}
26 kvadratini chiqarish.
x=\frac{-26±\sqrt{676+28\left(-15\right)}}{2\left(-7\right)}
-4 ni -7 marotabaga ko'paytirish.
x=\frac{-26±\sqrt{676-420}}{2\left(-7\right)}
28 ni -15 marotabaga ko'paytirish.
x=\frac{-26±\sqrt{256}}{2\left(-7\right)}
676 ni -420 ga qo'shish.
x=\frac{-26±16}{2\left(-7\right)}
256 ning kvadrat ildizini chiqarish.
x=\frac{-26±16}{-14}
2 ni -7 marotabaga ko'paytirish.
x=-\frac{10}{-14}
x=\frac{-26±16}{-14} tenglamasini yeching, bunda ± musbat. -26 ni 16 ga qo'shish.
x=\frac{5}{7}
\frac{-10}{-14} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{42}{-14}
x=\frac{-26±16}{-14} tenglamasini yeching, bunda ± manfiy. -26 dan 16 ni ayirish.
x=3
-42 ni -14 ga bo'lish.
x=\frac{5}{7} x=3
Tenglama yechildi.
9x^{2}-30x+25-\left(4x-2\right)^{2}=4\left(9-10x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-5\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-30x+25-\left(16x^{2}-16x+4\right)=4\left(9-10x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4x-2\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-30x+25-16x^{2}+16x-4=4\left(9-10x\right)
16x^{2}-16x+4 teskarisini topish uchun har birining teskarisini toping.
-7x^{2}-30x+25+16x-4=4\left(9-10x\right)
-7x^{2} ni olish uchun 9x^{2} va -16x^{2} ni birlashtirish.
-7x^{2}-14x+25-4=4\left(9-10x\right)
-14x ni olish uchun -30x va 16x ni birlashtirish.
-7x^{2}-14x+21=4\left(9-10x\right)
21 olish uchun 25 dan 4 ni ayirish.
-7x^{2}-14x+21=36-40x
4 ga 9-10x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-7x^{2}-14x+21+40x=36
40x ni ikki tarafga qo’shing.
-7x^{2}+26x+21=36
26x ni olish uchun -14x va 40x ni birlashtirish.
-7x^{2}+26x=36-21
Ikkala tarafdan 21 ni ayirish.
-7x^{2}+26x=15
15 olish uchun 36 dan 21 ni ayirish.
\frac{-7x^{2}+26x}{-7}=\frac{15}{-7}
Ikki tarafini -7 ga bo‘ling.
x^{2}+\frac{26}{-7}x=\frac{15}{-7}
-7 ga bo'lish -7 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{26}{7}x=\frac{15}{-7}
26 ni -7 ga bo'lish.
x^{2}-\frac{26}{7}x=-\frac{15}{7}
15 ni -7 ga bo'lish.
x^{2}-\frac{26}{7}x+\left(-\frac{13}{7}\right)^{2}=-\frac{15}{7}+\left(-\frac{13}{7}\right)^{2}
-\frac{26}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{7} olish uchun. Keyin, -\frac{13}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{26}{7}x+\frac{169}{49}=-\frac{15}{7}+\frac{169}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{7} kvadratini chiqarish.
x^{2}-\frac{26}{7}x+\frac{169}{49}=\frac{64}{49}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{15}{7} ni \frac{169}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{13}{7}\right)^{2}=\frac{64}{49}
x^{2}-\frac{26}{7}x+\frac{169}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{7}\right)^{2}}=\sqrt{\frac{64}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{7}=\frac{8}{7} x-\frac{13}{7}=-\frac{8}{7}
Qisqartirish.
x=3 x=\frac{5}{7}
\frac{13}{7} ni tenglamaning ikkala tarafiga qo'shish.