Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}-24x+16-3x^{2}=2\left(8+13x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-4\right)^{2} kengaytirilishi uchun ishlating.
6x^{2}-24x+16=2\left(8+13x\right)
6x^{2} ni olish uchun 9x^{2} va -3x^{2} ni birlashtirish.
6x^{2}-24x+16=16+26x
2 ga 8+13x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-24x+16-16=26x
Ikkala tarafdan 16 ni ayirish.
6x^{2}-24x=26x
0 olish uchun 16 dan 16 ni ayirish.
6x^{2}-24x-26x=0
Ikkala tarafdan 26x ni ayirish.
6x^{2}-50x=0
-50x ni olish uchun -24x va -26x ni birlashtirish.
x\left(6x-50\right)=0
x omili.
x=0 x=\frac{25}{3}
Tenglamani yechish uchun x=0 va 6x-50=0 ni yeching.
9x^{2}-24x+16-3x^{2}=2\left(8+13x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-4\right)^{2} kengaytirilishi uchun ishlating.
6x^{2}-24x+16=2\left(8+13x\right)
6x^{2} ni olish uchun 9x^{2} va -3x^{2} ni birlashtirish.
6x^{2}-24x+16=16+26x
2 ga 8+13x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-24x+16-16=26x
Ikkala tarafdan 16 ni ayirish.
6x^{2}-24x=26x
0 olish uchun 16 dan 16 ni ayirish.
6x^{2}-24x-26x=0
Ikkala tarafdan 26x ni ayirish.
6x^{2}-50x=0
-50x ni olish uchun -24x va -26x ni birlashtirish.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -50 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-50\right)±50}{2\times 6}
\left(-50\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{50±50}{2\times 6}
-50 ning teskarisi 50 ga teng.
x=\frac{50±50}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{100}{12}
x=\frac{50±50}{12} tenglamasini yeching, bunda ± musbat. 50 ni 50 ga qo'shish.
x=\frac{25}{3}
\frac{100}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{12}
x=\frac{50±50}{12} tenglamasini yeching, bunda ± manfiy. 50 dan 50 ni ayirish.
x=0
0 ni 12 ga bo'lish.
x=\frac{25}{3} x=0
Tenglama yechildi.
9x^{2}-24x+16-3x^{2}=2\left(8+13x\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-4\right)^{2} kengaytirilishi uchun ishlating.
6x^{2}-24x+16=2\left(8+13x\right)
6x^{2} ni olish uchun 9x^{2} va -3x^{2} ni birlashtirish.
6x^{2}-24x+16=16+26x
2 ga 8+13x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-24x+16-26x=16
Ikkala tarafdan 26x ni ayirish.
6x^{2}-50x+16=16
-50x ni olish uchun -24x va -26x ni birlashtirish.
6x^{2}-50x=16-16
Ikkala tarafdan 16 ni ayirish.
6x^{2}-50x=0
0 olish uchun 16 dan 16 ni ayirish.
\frac{6x^{2}-50x}{6}=\frac{0}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\left(-\frac{50}{6}\right)x=\frac{0}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{25}{3}x=\frac{0}{6}
\frac{-50}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{25}{3}x=0
0 ni 6 ga bo'lish.
x^{2}-\frac{25}{3}x+\left(-\frac{25}{6}\right)^{2}=\left(-\frac{25}{6}\right)^{2}
-\frac{25}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{6} olish uchun. Keyin, -\frac{25}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{25}{3}x+\frac{625}{36}=\frac{625}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{6} kvadratini chiqarish.
\left(x-\frac{25}{6}\right)^{2}=\frac{625}{36}
x^{2}-\frac{25}{3}x+\frac{625}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{6}\right)^{2}}=\sqrt{\frac{625}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{6}=\frac{25}{6} x-\frac{25}{6}=-\frac{25}{6}
Qisqartirish.
x=\frac{25}{3} x=0
\frac{25}{6} ni tenglamaning ikkala tarafiga qo'shish.