x uchun yechish
x = \frac{4}{3} = 1\frac{1}{3} \approx 1,333333333
x = \frac{7}{3} = 2\frac{1}{3} \approx 2,333333333
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}-24x+16=9x-12
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-4\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-24x+16-9x=-12
Ikkala tarafdan 9x ni ayirish.
9x^{2}-33x+16=-12
-33x ni olish uchun -24x va -9x ni birlashtirish.
9x^{2}-33x+16+12=0
12 ni ikki tarafga qo’shing.
9x^{2}-33x+28=0
28 olish uchun 16 va 12'ni qo'shing.
a+b=-33 ab=9\times 28=252
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 9x^{2}+ax+bx+28 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-252 -2,-126 -3,-84 -4,-63 -6,-42 -7,-36 -9,-28 -12,-21 -14,-18
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 252-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-252=-253 -2-126=-128 -3-84=-87 -4-63=-67 -6-42=-48 -7-36=-43 -9-28=-37 -12-21=-33 -14-18=-32
Har bir juftlik yigʻindisini hisoblang.
a=-21 b=-12
Yechim – -33 yigʻindisini beruvchi juftlik.
\left(9x^{2}-21x\right)+\left(-12x+28\right)
9x^{2}-33x+28 ni \left(9x^{2}-21x\right)+\left(-12x+28\right) sifatida qaytadan yozish.
3x\left(3x-7\right)-4\left(3x-7\right)
Birinchi guruhda 3x ni va ikkinchi guruhda -4 ni faktordan chiqaring.
\left(3x-7\right)\left(3x-4\right)
Distributiv funktsiyasidan foydalangan holda 3x-7 umumiy terminini chiqaring.
x=\frac{7}{3} x=\frac{4}{3}
Tenglamani yechish uchun 3x-7=0 va 3x-4=0 ni yeching.
9x^{2}-24x+16=9x-12
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-4\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-24x+16-9x=-12
Ikkala tarafdan 9x ni ayirish.
9x^{2}-33x+16=-12
-33x ni olish uchun -24x va -9x ni birlashtirish.
9x^{2}-33x+16+12=0
12 ni ikki tarafga qo’shing.
9x^{2}-33x+28=0
28 olish uchun 16 va 12'ni qo'shing.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 9\times 28}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -33 ni b va 28 ni c bilan almashtiring.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 9\times 28}}{2\times 9}
-33 kvadratini chiqarish.
x=\frac{-\left(-33\right)±\sqrt{1089-36\times 28}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-33\right)±\sqrt{1089-1008}}{2\times 9}
-36 ni 28 marotabaga ko'paytirish.
x=\frac{-\left(-33\right)±\sqrt{81}}{2\times 9}
1089 ni -1008 ga qo'shish.
x=\frac{-\left(-33\right)±9}{2\times 9}
81 ning kvadrat ildizini chiqarish.
x=\frac{33±9}{2\times 9}
-33 ning teskarisi 33 ga teng.
x=\frac{33±9}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{42}{18}
x=\frac{33±9}{18} tenglamasini yeching, bunda ± musbat. 33 ni 9 ga qo'shish.
x=\frac{7}{3}
\frac{42}{18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{24}{18}
x=\frac{33±9}{18} tenglamasini yeching, bunda ± manfiy. 33 dan 9 ni ayirish.
x=\frac{4}{3}
\frac{24}{18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{7}{3} x=\frac{4}{3}
Tenglama yechildi.
9x^{2}-24x+16=9x-12
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(3x-4\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}-24x+16-9x=-12
Ikkala tarafdan 9x ni ayirish.
9x^{2}-33x+16=-12
-33x ni olish uchun -24x va -9x ni birlashtirish.
9x^{2}-33x=-12-16
Ikkala tarafdan 16 ni ayirish.
9x^{2}-33x=-28
-28 olish uchun -12 dan 16 ni ayirish.
\frac{9x^{2}-33x}{9}=-\frac{28}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\left(-\frac{33}{9}\right)x=-\frac{28}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{3}x=-\frac{28}{9}
\frac{-33}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-\frac{28}{9}+\left(-\frac{11}{6}\right)^{2}
-\frac{11}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{6} olish uchun. Keyin, -\frac{11}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-\frac{28}{9}+\frac{121}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{6} kvadratini chiqarish.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{1}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{28}{9} ni \frac{121}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{11}{6}\right)^{2}=\frac{1}{4}
x^{2}-\frac{11}{3}x+\frac{121}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{6}=\frac{1}{2} x-\frac{11}{6}=-\frac{1}{2}
Qisqartirish.
x=\frac{7}{3} x=\frac{4}{3}
\frac{11}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}