{ \left(3x+2 \right) }^{ } (x+3)=x+4
x uchun yechish
x=\frac{\sqrt{19}-5}{3}\approx -0,213700352
x=\frac{-\sqrt{19}-5}{3}\approx -3,119632981
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(3x+2\right)\left(x+3\right)=x+4
1 daraja ko‘rsatkichini 3x+2 ga hisoblang va 3x+2 ni qiymatni oling.
3x^{2}+11x+6=x+4
3x+2 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+11x+6-x=4
Ikkala tarafdan x ni ayirish.
3x^{2}+10x+6=4
10x ni olish uchun 11x va -x ni birlashtirish.
3x^{2}+10x+6-4=0
Ikkala tarafdan 4 ni ayirish.
3x^{2}+10x+2=0
2 olish uchun 6 dan 4 ni ayirish.
x=\frac{-10±\sqrt{10^{2}-4\times 3\times 2}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 10 ni b va 2 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\times 3\times 2}}{2\times 3}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-12\times 2}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100-24}}{2\times 3}
-12 ni 2 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{76}}{2\times 3}
100 ni -24 ga qo'shish.
x=\frac{-10±2\sqrt{19}}{2\times 3}
76 ning kvadrat ildizini chiqarish.
x=\frac{-10±2\sqrt{19}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{19}-10}{6}
x=\frac{-10±2\sqrt{19}}{6} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{19} ga qo'shish.
x=\frac{\sqrt{19}-5}{3}
-10+2\sqrt{19} ni 6 ga bo'lish.
x=\frac{-2\sqrt{19}-10}{6}
x=\frac{-10±2\sqrt{19}}{6} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{19} ni ayirish.
x=\frac{-\sqrt{19}-5}{3}
-10-2\sqrt{19} ni 6 ga bo'lish.
x=\frac{\sqrt{19}-5}{3} x=\frac{-\sqrt{19}-5}{3}
Tenglama yechildi.
\left(3x+2\right)\left(x+3\right)=x+4
1 daraja ko‘rsatkichini 3x+2 ga hisoblang va 3x+2 ni qiymatni oling.
3x^{2}+11x+6=x+4
3x+2 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+11x+6-x=4
Ikkala tarafdan x ni ayirish.
3x^{2}+10x+6=4
10x ni olish uchun 11x va -x ni birlashtirish.
3x^{2}+10x=4-6
Ikkala tarafdan 6 ni ayirish.
3x^{2}+10x=-2
-2 olish uchun 4 dan 6 ni ayirish.
\frac{3x^{2}+10x}{3}=-\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{10}{3}x=-\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{2}{3}+\left(\frac{5}{3}\right)^{2}
\frac{10}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{3} olish uchun. Keyin, \frac{5}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-\frac{2}{3}+\frac{25}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{3} kvadratini chiqarish.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{19}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{3} ni \frac{25}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{3}\right)^{2}=\frac{19}{9}
x^{2}+\frac{10}{3}x+\frac{25}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{19}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{3}=\frac{\sqrt{19}}{3} x+\frac{5}{3}=-\frac{\sqrt{19}}{3}
Qisqartirish.
x=\frac{\sqrt{19}-5}{3} x=\frac{-\sqrt{19}-5}{3}
Tenglamaning ikkala tarafidan \frac{5}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}