x uchun yechish
x=\frac{\sqrt{7}-4}{9}\approx -0,150472077
x=\frac{-\sqrt{7}-4}{9}\approx -0,738416812
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}+6x+1=-2x
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3x+1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}+6x+1+2x=0
2x ni ikki tarafga qo’shing.
9x^{2}+8x+1=0
8x ni olish uchun 6x va 2x ni birlashtirish.
x=\frac{-8±\sqrt{8^{2}-4\times 9}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 8 ni b va 1 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 9}}{2\times 9}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-36}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{28}}{2\times 9}
64 ni -36 ga qo'shish.
x=\frac{-8±2\sqrt{7}}{2\times 9}
28 ning kvadrat ildizini chiqarish.
x=\frac{-8±2\sqrt{7}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{2\sqrt{7}-8}{18}
x=\frac{-8±2\sqrt{7}}{18} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{7} ga qo'shish.
x=\frac{\sqrt{7}-4}{9}
-8+2\sqrt{7} ni 18 ga bo'lish.
x=\frac{-2\sqrt{7}-8}{18}
x=\frac{-8±2\sqrt{7}}{18} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{7} ni ayirish.
x=\frac{-\sqrt{7}-4}{9}
-8-2\sqrt{7} ni 18 ga bo'lish.
x=\frac{\sqrt{7}-4}{9} x=\frac{-\sqrt{7}-4}{9}
Tenglama yechildi.
9x^{2}+6x+1=-2x
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3x+1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}+6x+1+2x=0
2x ni ikki tarafga qo’shing.
9x^{2}+8x+1=0
8x ni olish uchun 6x va 2x ni birlashtirish.
9x^{2}+8x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{9x^{2}+8x}{9}=-\frac{1}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{8}{9}x=-\frac{1}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{8}{9}x+\left(\frac{4}{9}\right)^{2}=-\frac{1}{9}+\left(\frac{4}{9}\right)^{2}
\frac{8}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{9} olish uchun. Keyin, \frac{4}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{8}{9}x+\frac{16}{81}=-\frac{1}{9}+\frac{16}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{9} kvadratini chiqarish.
x^{2}+\frac{8}{9}x+\frac{16}{81}=\frac{7}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{9} ni \frac{16}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{4}{9}\right)^{2}=\frac{7}{81}
x^{2}+\frac{8}{9}x+\frac{16}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{4}{9}\right)^{2}}=\sqrt{\frac{7}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{4}{9}=\frac{\sqrt{7}}{9} x+\frac{4}{9}=-\frac{\sqrt{7}}{9}
Qisqartirish.
x=\frac{\sqrt{7}-4}{9} x=\frac{-\sqrt{7}-4}{9}
Tenglamaning ikkala tarafidan \frac{4}{9} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}